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Abstract

I propose an approach to reconciling semantics and reflection in the design of computing sys-
tems, two topic often considered mutually exclusive. My approach distinguishes between three
dimensions of meta-computation: beyond the well-known ante/post dimension of staged evalu-
ation and code-generation, I identify a hypo/hyper dimension of semantic implementation and
refinement, and a back/fore dimension of runtime effect control. My thesis is divided in four
parts.

First, I make elementary use of Category Theory (no advance knowledge required) to unify
common formalisms for computational semantics. I can then specify a notion of Implementation
as a partial correspondance between an abstract computation being implemented and a concrete
computation implementing it. I study common composable properties that implementations
may have; these notably include a key yet often neglected property that I dub Observability,
by which a state of the abstract computation can be recovered from the interrupted state of
concrete computation implementing it.

Second, I use the Curry-Howard Correspondance to systematically extract from the previous
formalism a protocol to manipulate implementations as first-class entities at runtime. This
protocol notably allows to navigate up and down the semantic tower of a computation and
zoom in or out of levels of abstraction while the computation is running. I then discuss how to
use this protocol to reinterpret classic topics involving implementation, from compilation and
static type analysis to aspect-oriented programming and refactoring.

Third, I present potential applications of these formalism and protocol to specify, verify,
generalize, compose, or otherwise reinterpret many existing techniques. Notably, Migration,
whereby a implementation is replaced by another one while the computation is running, can
express process migration, garbage collection, zero copy routing, dynamic configuration or JIT
compilation. The categorical concept of Natural Transformation, whereby a implementation
can be naturally transformed into another, offers an approach to making Code Instrumentation
uniformly available at all levels of abstraction, which applies to debugging, logging, access
control, concurrency control, robustness, orthogonal persistence, and more.

Fourth and last, I explore a reflective architecture, in which software is systematically orga-
nized around the use of the previous protocols. Every computation has an explicitly associated
semantic tower at runtime; dynamic changes to this tower are migrations controlled by a meta-
computation we dub its background controller. Software is then written, distributed and evolved
not in terms of applications each embodying an entire tower of semantics, but in terms of smaller
components that interact through the reflective protocols. This architecture may apply to any
kind of development platform, user interface shell, operating system, or distributed and vir-
tualized application manager. I discuss the potential benefits of this architecture in terms of
performance, features, robustness and social organization.
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Résumé

Je propose une approche pour réconcilier sémantique et réflexivité dans la conception de sys-
tèmes informatiques, deux sujets souvent considérés comme mutuellement exclusifs. Mon ap-
proche distingue trois dimensions du méta-calcul : au-delà de la dimension ante/post bien con-
nue de l’évaluation par étapes et de la génération de code, j’identifie une dimension hypo/hyper
d’implémentation et de raffinement sémantique, et une dimension arrière/avant de contrôle des
effets d’exécution. Ma thèse est divisée en quatre parties.

Primo, je fais un usage élémentaire de la théorie des catégories (aucune connaissance préal-
able requise) pour unifier des formalismes habituels pour la sémantique des logiciels. Je peux
alors spécifier une notion d’Implémentation comme correspondance partielle entre un calcul ab-
strait à implémenter et un calcul concret l’implémentant. J’étudie les propriétés composables
courantes que les implémentations peuvent avoir ; ceux-ci incluent notamment une propriété
clé mais souvent négligée que je baptise Observabilité, par laquelle un état du calcul abstrait
peut être récupéré à partir de l’état interrompu du calcul concret l’implémentant.

Secundo, j’utilise la correspondance de Curry-Howard pour extraire systématiquement du
formalisme précédent un protocole pour manipuler les implémentations en tant qu’entités de
première classe au moment de l’exécution. Ce protocole permet notamment de naviguer de haut
en bas dans la tour sémantique d’un calcul et d’effectuer un zoom avant ou arrière sur les niveaux
d’abstraction pendant l’exécution du calcul. Je discute ensuite de la manière d’utiliser ce
protocole pour réinterpréter des sujets classiques impliquant l’implémentation, de la compilation
et de l’analyse de type statique à la programmation orientée aspect et à la refactorisation .

Tertio, je présente des applications potentielles de ces formalismes et protocoles pour spéci-
fier, vérifier, généraliser, composer ou autrement réinterpréter de nombreuses techniques exis-
tantes. Notamment, la Migration, où une implémentation est remplacée par une autre pendant
que le calcul est en cours, peut exprimer migration de processus, récupération de place, routage
sans copie, configuration dynamique ou compilation JIT. Le concept catégorique de Transfor-
mation Naturelle, par lequel une implémentation peut être naturellement transformée en une
autre, offre une approche pour rendre l’Instrumentation de Code uniformément disponible à
tous les niveaux d’abstraction, ce qui s’applique au débogage, à la journalisation, au contrôle
d’accès, au contrôle de la concurrence, de la robustesse, de la persistance orthogonale, etc.

Quarto et in fine, j’explore une architecture réflexive, dans lequel les logiciels sont systéma-
tiquement organisés autour de l’utilisation des protocoles précédents. Chaque calcul a une tour
sémantique explicitement associée au moment de l’exécution ; les changements dynamiques de
cette tour sont des migrations contrôlées par un méta-calcul que nous appelons son contrôleur
d’arrière-plan. Le logiciel est alors écrit, distribué et évolué non pas en termes d’applications
incarnant chacune une tour entière de sémantique, mais en termes de composants plus petits qui
interagissent à travers les protocoles réflexifs. Cette architecture peut s’appliquer à tout type
de plate-forme de développement, shell d’interface utilisateur, système d’exploitation ou ges-
tionnaire d’applications distribuées et virtualisées. Je discute des avantages potentiels de cette
architecture en termes de performances, fonctionnalités, robustesse et organisation sociale.
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Preface

You are reading a draft of my undefended PhD thesis. Indeed this thesis is not currently in a
state that is defensible as an academic contribution.

It is notably lacking (a) some application, theorem or proof that would be both original and
non-trivial, and (b) more in-depth discussions of related works and bibliographical references.

Instead, this thesis offers an original point of view that generalizes known techniques in a
posteriori trivial ways, and suggests an original way of architecting software development that
remains so far unimplemented.

I originally worked on this PhD thesis between 1997 and 2000 under Jean-Bernard Stefani
and Elie Najm, introducing and formalizing the core notions of an implementation and its
properties, that constitute the essence of the earlier parts of the thesis, plus a few intuitions
of the rest. I completely rewrote the thesis on my own between 2016 and 2017, clarifying and
extending the original ideas, and rewriting the latter parts from scratch.

During this rewrite, important changes compared to previously circulated early drafts in-
clude: (1) Using category theory to generalize an initial work on rewrite systems with no
side-effects. (2) Over time, changing the nomenclature for some concepts so that “soundness”
and “observability” are now the respective names for properties previously dubbed “safety” and
“soundness” in early drafts. (3) Also, distinguishing the three independent axes of reflection, and
the according nomenclature for“implement”, etc., instead of“reify”and“reflect”. (4) Identifying
code instrumentations as the opposites of natural transformations.

I gave talks based on this work at the BostonHaskell meeting of May 2016 https://

youtu.be/heU8NyX5Hus, at the Lisp NYC meeting or March 2017 https://www.meetup.com/

LispNYC/events/237759785/, at the Off-the-Beaten-Track workshop at POPL 2018 https://

github.com/fare/climbing, and at LambdaConf 2018 https://youtu.be/fH51qhI3hq0.
I also wrote a very informal blog using swiftian storytelling to expound many of the ideas

underlying this thesis: Houyhnhnm Computing https://ngnghm.github.io (the blog name is
pronounced like “Hunam Computing”, the protagonist name like “Ann”).

A recent draft of this thesis should be available at http://fare.tunes.org/tmp/phd/

thesis.pdf for which https://bit.ly/FarePhD should be a valid shorthand.
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Chapter 1

Introduction

Reflection is about inspecting and changing a computation, including at runtime. Semantics is
about having a fixed meaning to the computation even before it is run, that is guaranteed not
to change at runtime. The two seem antithetical, to the point that people interested in one tend
to accept that they won’t be interested in the other, at least not at the same time. Yet, the
present thesis is about reconciling the two and having both runtime reflection and compile-time
semantics at the same time. Informally, the secret to this reconciliation is that semantics can
study what the computation does, while reflection will control how the computation does it.

1.1 Basic Intuitions

1.1.1 Semantic Towers

A piece of modern software can be mindboggingly complex, made of tens or hundreds of millions
of lines of code, more than any one developer can hold in his mind, much less possibly under-
stand. However, one powerful way that software is kept simple enough for developers to be able
to handle at all, a small piece at a time, is to decompose it into semantic towers[citation needed],
wherein each layer is the implementation of some more abstract computation using some more
concrete computation.

Hence, a typical program implements a user-visible application (a more abstract compu-
tation) on top of a programming language (a more concrete computation). The compiler for
that programming language implements that language (now seen as the more abstract compu-
tation) in terms of a virtual machine (a yet more concrete computation). Then a lower layer
(interpreter, JIT compiler, or compiler backend pass) expresses this virtual machine (in turn
seen as an abstract computation) in terms of a somewhat portable view of the hardware as
provided by the operating system (here seen as a concrete computation). The operating system
provides this portable view of the hardware (then seen as an abstraction) by mapping it to
the semantics of the actual hardware, CPU, chipset and many attached devices. This actual
hardware realizes the documented CPU semantics in term of the underlying digital circuits —
though it may itself involve one or more intermediate abstraction levels involving firmware or
microcode, wherein instructions as seen by the user are actually made of smaller instructions
seen by the actual hardware digital circuits.

These digital circuits are implemented as transistors in terms of analog electrical circuits.
The analog electrical circuits are implemented in terms of quantum mechanics. This quantum
mechanics might be implemented by God in terms of his own digital physics computer à la Ed
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Fredkin[citation needed], though any access to that layer of abstraction would be out of reach of
mere humans. Many more abstraction layers may exist above, below, or in the middle, that
were omitted in the list above, yet may be usefully added when to analyze some phenomenon:
each observation is best done at a suitable layer of the semantic tower — one with the relevant
details you care about, yet without the noise of details you don’t, with a wider point of view
than layers below, yet with a finer resolution than the layers above.

Viewing software in terms of such decompositions and recompositions into layers of abstrac-
tions allows developers to only have to focus on one layer at a time, using a programming
language adapted to said layer of semantics. Within each tower, they can further divide their
computations in terms of smaller entities, whether they are functions and variables, instructions
and memory addresses, gates and signals, or fields and particles.

1.1.2 Mentally Navigating the Towers

It is said that good developers can mentally zoom in and out of these levels of abstraction. As
they do, they understand that none of these levels possibly contradicts the others, since they
are distinct but coherent views on a same overall computation. Thus, they can imagine the
behavior of their systems at the level of abstraction that befits the issue at hand, be it a user-
visible application feature (or bug), the way it is implemented in a Domain-Specific Language
(DSL), or some behavior in a general purpose programming language, a compiler pass, a virtual
machine, the processor in user-mode or in system-mode, etc.

It is also said that the most interesting mathematical theorems establish a correspondence
between two different structures. With these theorems, mathematicians can then consider
those distinct structures as multiple points of view on a same underlying object; then, at least
in theory, they can freely switch from one point of view to the other. Hence, they can pick
whichever point of view makes a theorem easiest to prove, and use that result in whichever
point of view it is most useful.

These two complementary abilities are very important when designing or maintaining com-
puting systems: with them developers may at any time choose the most appropriate way to
think about the system to keep the issue at hand tractable, yet the most efficient way to write
it to keep its development and/or execution costs affordable.

However, these abilities so far remain purely mental, mostly unaided by software automation
and disconnected from the interactive development loop. Developers have to cultivate these
multiple points of view in their head (sometimes assisted by pen and paper), and the thinking
has to all happen way before runtime, before compile-time, even before code-writing time. Yes,
an iterated process can be used whereby the code-writing time for the next version of some code
is after the runtime of the previous version; but often developers still have to deal mentally with
a lot of abstraction levels at which they receive scant feedback from such runtimes. Developers
have to develop models of the software in their brain, that (pending any significant improvement
to the capacities of the human brain) remain limited to a increasingly small portion of the
software written as software gets more sophisticated.

1.1.3 Navigating the Towers at Runtime

Now, what if those abilities, instead of being required from developers before they may even
think about programs, where instead provided and supported by their programming environ-
ments? Then, developers would be able to interactively handle and debug programs that are
much more complex than they could master mentally. Moreover, the ability to change the point
of view on a program at runtime would have wider consequence: it would open new territories
for software architecture.
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Indeed with this “superpower”, developers could migrate computations from one underlying
software and hardware stack to another, while it is running, with all its dynamic state. They
could then automatically enable and disable various kinds of code instrumentations, based on
various varying conditions: They could change how they monitor computations at runtime, or
enable and disable time-travel debugging on a running computation when specific triggers are
tripped. They could dynamically tune the parameters controlling how their data persists or is
replicated (latency, throughput, number of copies, overall cost, encryption keys, trust in cloud
providers, optimism vs transaction guarantees, etc.)

What more, each computation needs a controller meta-computation to manage when it is
migrated to what new implementation. This controller can also serve to virtualize declarative
I/O. Programs can then be factored in ways that split functionality between program and
metaprogram, rather than between program and library. The important distinction here is
that when using a library a program includes all its semantics, whereas when relying on a
metaprogram, their semantics remain well separated, making for simpler reasoning and safer,
more secure programs.

1.1.4 Reconciling Semantics and Reflection

The above runtime abilities are the promise of this thesis. Our approach to achieve them is
to reconcile two subfields of Computer Science often considered antithetical: Semantics and
Reflection. Indeed, a general belief is that when you use Reflection, anything goes: all language
invariants can be subverted, any reasoning is voided, the logical theory becomes trivial, and
study of semantics is vain; therefore, for the semantics of a language to be well-defined, it must
avoid any reflective features. Conversely, those who use reflection often feel that semantics can
only limit them, when they seek to break out of the limits to what they can express; therefore,
their efforts at exploring semantics usually stop at explaining how their systems are or could
be implemented, with no regards for semantics or invariants.

Yet, this thesis proposes a general model for reflection that is resolutely rooted in semantics.
The first part is dedicated purely to the semantics of implementations. The second part builds
on the first to extract a runtime protocol that allows for reflection. The third part explores
what semantically meaningful operations are enabled or facilitated by this protocol. The fourth
part describes a reflective architecture to take advantage of the protocol.

But beyond what this thesis proposes, the hope is to reconcile the two subfields of semantics
and reflection: they need not be alien to each other; and they must cease to be, for both are
required in large enough systems.

1.2 Reflection

1.2.1 What it is

This thesis is about Reflection in computational systems.

Informally, Reflection is the phenomenon by which some formal systems can reason or
compute about themselves — for some meaning of “themselves”. The metaphor underlying
the name is that the system (or an agent in the system) can look at “itself” as if in a mirror.
More formally, Reflection is the use of self-reference, fixed points, or “strange loops” in formal
systems, allowing for meta-reasoning or meta-computing about“themselves”— and often about
any other (logical or computational) formal system, in a universal way. We may speak of
Reflection when discussing of meta-reasoning or meta-computing in a universal system, even



18 CHAPTER 1. INTRODUCTION

when no self-reference or loop has been introduced (yet) besides the loop implicit in using formal
systems to reason about other formal systems.

Note that formal systems encompass both logical systems and computational systems; the
distinction between the two can often be soft and blurry, a matter more of point of view and
intent from outside the system than of specific properties of the system itself: not only does
the Curry-Howard correspondence establish an isomorphism between proofs and programs;
computer programs routinely implement proof and validation in logical systems, and logical
systems are used to reason about computer programs.

A universal meta-computing system, is thus one where programs and programmers can see
code as data, and data as code. A little bit of theory[25] shows that in any sufficiently expressive
base computing system (where any system capable of expressing simple arithmetics suffices), it
is always possible to go from data to code at the cost of writing an interpreter for the data, and
to go from code to data at the cost of doing everything in said interpreter. Any system capable
of expressing simple arithmetic functions can therefore be seen as a universal meta computing
system. However, the approach consisting in using such an interpreter and using only it can be
extremely costly, and reflection is much better done when the programming language supports
it natively: not only is the implementation of reflection much faster then, but it is also less
fragile as the programming language evolves.

1.2.2 Some History

Reflection is the instrumental device relied upon by the the very foundational works of Kurt
Gödel[10] and Alan Turing[25], that started both modern logic and modern computer science in
the 1930s. In the 1960s, John McCarthy’s LISP programming language[20] led to the discovery
of simple and cheap ways of manipulating and evaluating program representations. Brian
Cantwell Smith’s 1982 thesis[24] made explicit the thinking about reflection in Programming
Languages.

These days, not only Lisp dialects, but all major Programming Language platforms feature
some support for reflection at both runtime and compile-time: not just “scripting languages”
based on interpreters for which it is relatively cheap to “open” the internals to enable reflective
features; not only popular compiler platforms like C++, .NET, or Java, that couldn’t escape
the practical necessity of such features; but even languages with“formal”background like ML or
Haskell, whose authors may have initially tried to denigrate and avoid reflection as a dangerous
source of paradoxes (that just like Bertrand Russell a century earlier[citation needed] they tried to
exclude using types).

1.2.3 Going Meta

The prefix traditionally used to indicate the use of reflection is meta: thus, when a formal
system is used to reason or compute about another, it is called the meta system, and the other
one, in contrast is called the base system. In illustrative diagrams, the meta system is often
pictured above the base system, according to the metaphor of a God or superior being overseeing
his creatures and interfering as needs be.

Now, etymologically, meta is a Greek word that means “after”, “above” or “beyond”. But
in the XXth century, it has come to be widely used among scientists and poets in English and
other languages as a prefix to mean something different: discourse about a topic.

This use has its origin with “Metaphysics”[citation needed], a collection of books by Aristotle,
that when his complete works were first compiled, were published after his treatise on nature —
“Physics” in Greek. The relation of Metaphysics to Physics was thus that of a textual sequence:
one volume came after the other. The name had not been given by Aristotle himself, but by



1.2. REFLECTION 19

whoever compiled his complete works, and failed to imagine a better name to fit the unusual
topics in that volume. Indeed, in“Metaphysics”, Aristotle discussed various topics of philosophy
that didn’t fit in any known, named domain: he started with what he called first philosophy,
which in modern terms we might call the foundations of philosophy, principles on which the
rest of philosophy rests, and went on discussing the nature of the sciences, of reality, of “being”
itself.

Now for people who studied Philosophy, and who kept reading “Metaphysics” (in trans-
lated versions) long after anyone interested in nature had stopped reading “Physics”, and who
weren’t fluent in Greek, the prefix “meta” was inferred as denoting a semantic relation between
“Metaphysics” and “Physics”: if Physics was the Science that studies Nature, then Metaphysics
was the Science that studies the Science of Nature. In the early XXth century, the Science
that studies Mathematics and its foundations, itself using a lot of Mathematics, was dubbed
Metamathematics. Since then, meta-X came to be used to mean anything science or activity
about X, especially (but not only) when it involves a lot of X, whatever X may be. A metalog-
ical variable is a logical variable in a model of logic; a meta-discussion is a discussion about
a discussion, etc. This use was made famous by Douglas Hofstadter’s works Gödel, Escher,
Bach and Metamagical Themas [citation needed], and by computer scientists who deal with such
situations all the time.

1.2.4 Representation

An entity m in a meta system may represent a first-class entity or second-class phenomenon
b in the base system, such that based on which logical statements can be made and proven
(or disproven) about the entity or phenomena in the base system, and transformations may be
computed.

The verb “represent” and noun “representation” have a clear traditional usage, that long
predates Smith’s thesis, and continues beyond, that may set the pattern for other words.

Here, first-classmeans that an entity is embodied as a value that a system can itself compute
over or reason about, and bind a variable to if applicable; phenomena that are not first-class
are called second-class and typically include types, environments, continuations, and other
contextual data that is necessary or useful to specify the behavior of the system or reason
about it, yet not embodied in it.

The noun representation refers to a notional function from the base system, or an extension
thereof that include its second-class phenomena, to first-class values in the meta system. When
the context makes it clear and unambiguous, a particular meta-level entity that represents
a particular base-level entity or phenomenon is itself called a representation, while the base-
level entity or phenomenon being represented is just called entity, object, type, environment,
continuation, context, or whatever noun describes its embodied or disembodied kind of notion.

A representation typically includes more details, aspects, distinctions, than matter to the
phenomenon being represented. For instance, the representation of functions and variables
may be or have labels or names as a hook to manipulate or display these entities, whereas
the corresponding base-level entities possess no such attribute. We say of these extra aspects,
distinctions, etc., that they are syntactic, whereas those that matter in the base-level entity
are semantic. The representation may thus involve purely syntactic entities such as labels and
names, paths and line numbers, that have no meaning at the base-level (if a total mapping is
required, they can be forgetfully mapped to the same element of a unit type). A representation
that maps much of the semantics of the base system directly to semantic elements of the meta
system implicitly processed by the meta system semantics without introducing many syntactic
entities or aspects is said to be shallow; on the other hand, a representation that transforms
some base system elements into syntactic entities that are to be explicitly processed by outside
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functions is said to be deep. The shallowest representation is of the system by itself, making no
processing step explicit; the deepest representation is of the system in terms of data structures,
making all processing steps explicit.

The opposite of representation is meaning or denotation. The base-level phenomena b is
the meaning denoted by the meta-level representation m. The meaning or denotation function
goes from meta-level first-class value to base-level phenomena (first-class or second-class). Note
however that as for the verb form, we still say that m denotes b, that m means b, rather than
the opposite. The grammatical relationship between the verb and noun forms of these corre-
spondances between base and meta level therefore does not vary uniformly. We also sometimes
say even that m evaluates to b, when b is a first-class value and no further context is necessary
to go from representation to meaning.

1.2.5 Reification and Reflection

Reflection is the phenomenon of self-reference within a system of the system itself, that then
plays the role both of meta system and base system. There can be reflection without explicit
representation, as Brian Cantwell Smith insists in his seminal thesis[24]: a system may behave
in ways that refer to its own behavior, without involving a representation of that behavior as
well-defined first-class “symbolic” entity that is explicitly manipulated by the system. However,
most of the research of reflection, including the present thesis as well as Cantwell Smith’s
involves an explicit representation.

As far as nomenclature goes, Cantwell Smith says that “the system (as a meta system)
reflects about itself (as a base system)” (parenthetical remarks ours), and that a program may
“reflect and thereby obtain fully articulated “descriptions” [. . . ] of the state of interpretation
process that was in effect at the moment of reflection”. The verb’s subject is the system as meta
system, and it has itself as base system as implicit direct or indirect object. Furthermore his
thesis is written in the context of a procedural tradition wherein computation happens through
procedures that side-effect a model : the model reifies the state of the system as base system;
modifications to that model within the meta system and to the underlying base system are then
“causally connected”. Cantwell Smith does not exactly have a word for the opposite of reify,
but the verb absorb is used for that (and also for somewhat different uses). Further, Cantwell
Smith layers each layer of meta computation notionally above the base layer that it reflects —
a convention followed by much of subsequent literature[citation needed].

Wand and Friedman [8, 28] in their efforts to clarify Cantwell Smith’s work, define the
verbs reify and reflect as inverses: A program may reify the state of its base-level computation,
including second-class information such as environment and continuation, and pass that state
as a first-class value to some function run at its meta-level (which is notionally up in this
classic literature). Reification is that process that takes a base-level phenomenon and turns
it into a meta-level value. Conversely, a program may take such first-class values as result
from reification and other meta-level computations, and reflect those values into a base-level
computation (notionally one step down in this classic literature). Reflection is that process that
takes a meta-level value and turns it into a base-level phenomenon.

1.2.6 Directional Confusion

Now, which is reification and which is reflection is neither obvious nor context-independent,
and the same pair of functions can sometimes be viewed both ways.

Consider the popular Haskell library Data.Reflection written by Edward Kmett, following
Kiselyov and Shan[15]. Kiselyov and Shan seem to themselves follow the Wand and Friedman
nomenclature for reify and reflect (though they do not cite them), with the point of view
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that type-level programming is some compile-time meta-level for generating base-level code
that will be evaluated at runtime. Their reflect function goes from types to runtime values,
whereas their reify functions go from runtime values to types (using some clever continuation
encoding to remain expressible in Haskell). Examples provided include a compile-time type-
level representation of integers and runtime integers, or similarly for lists of integers, or for any
Storable value.

Now, another use of reflection[citation needed] may have several meta-level each add increas-
ingly concrete implementation details to previous more abstract computations. In such points
of view, each meta-level is more concrete, each base-level more abstract, and types are even
more abstract. Reification then goes toward the concrete and reflection toward the abstract, in
directions opposite to the Haskell library above.

Furthermore, a reflective optimizer that would take a type-level representation of integers
and try to extract an actual meta-level value of an integer, so it can inline that value in various
operations, would consider the type as a second-class base-level phenomenon to be reified into
a first-value integer value at its meta-level. Reification and reflection would then also go the
opposite direction than the Haskell library above.

Finally, “reification” etymologically means turning a sometimes vague concept into a actual
thing, and it isn’t always obvious whether the meta-level abstractions even when first-class val-
ues are more “things” than the concrete base-level phenomena even when second-class. Mean-
while, “reflection” through a mirror suggests that a system is looking at itself, and that the
base-level is the “thing” and the meta-level representation a model, yet the way we use the
concept is more generally useful in any stratified situation where a meta system looks at a base
system that is well distinguished and not “itself” but other.

To resolve confusion, we will therefore eschew the use of the terms “reification” and “reflec-
tion”, and instead introduce and use unambiguous terms that work wherever a “meta” system
and a “base” system are involved, with or without “self-reference”, and instead clearly distin-
guishing between three different kinds of situations.

1.3 Three Dimensions of Meta-Computation

For the purposes of this thesis, we will distinguish three very different kinds of meta-computations,
that don’t seem to have been explicitly distinguished in existing literature. This distinction will
clarify the relationship between software elements when many programmers might otherwise be
confused when “reflection” or “meta” are involved.

1.3.1 Generation

Our first dimension of “meta” in software is when a program, the metaprogram, manipulates the
code of another program, the base program, or group of programs: reading, injesting, analyzing
source code into internal representations, modifying and transforming those representations,
and often in the end generating new code, either more “source” code in the same language or
a different one, or “object” code in a usually lower-level language closer to execution by the
hardware.

The prototypical such metaprograms are compilers, that transform source code into object
code. Lisp macros, C preprocessor macros, C++ templates, Haskell type-level programming, all
kinds of code generators, code reformatters, transpilers, preprocessors and expanders, are more
such metaprograms. Interpreters, that take a source program as input and evaluate it, are also
such metaprograms: they process a program and directly generate its effects and output without
generating a user-visible object program as an intermediate step, though many generate one
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internally, representing the program as an abstract syntax tree (AST) for “naive” interpreters,
or as a somewhat more elaborate bytecode for more advanced interpreters.

The important way that the metaprogram is “meta” is that it runs before the base pro-
gram it processes, in an earlier stage within a sequence or more generally hierarchy of staged
evaluations.1 This is ironic, since in Greek, meta means after, which is the opposite of before.
To describe this phenomenon, I thus propose that the (Latin) prefixes ante (before) and post
(after) be used.2

Thus, we will call anteprogram the metaprogram that generates code, and postprogram the
code that is generated, the evaluation of which comes later. When the metaprogram analyzes
code of the base program rather than generates it, we will still say anteprogram for the metapro-
gram and postprogram for the base program, considering that the metaprogram is still in this
same evaluation space that exists before that of the base program.

We will call generation the process of computing a postprogram from an anteprogram. Con-
versely we will call quotation the process of computing an anteprogram that (trivially) generates
a given postprogram.3 In the common case that evaluating an anteprogram outputs a postpro-
gram, we will say that the anteprogram generates the postprogram, and that the postprogram
is generated by the anteprogram. To obtain an anteprogram that generates the postprogram,
we will quote it.

This dimension of metaprogramming we will call generative.4

We will not discuss this dimension much in the following thesis, not because it is insignif-
icant, but because there is already a quite large and very active body of literature on the
topic, from compilers to macros and everything else. This dimension of metaprogramming is
well-understood and we do not have much in terms of new lights to provide on it. Thus, we
will readily assume all affordances of the modern generative metaprogramming, use them in the
system we build, and make them available to programmers using it, even though most program-
ming environments only allow limited forms of such metaprogramming to regular programmers,
and most programmers fail to use any.

1Though for a very trivial and thin notion of “before” in the case of an naive interpreter.
2I strongly rejected the pair prin/meta or pro/meta (Greek for before/after) as prefixes for this dimension

of metaprogramming, because of how the usage for meta conflicted with common usage for metaprogramming,
which would only increase confusion. I also rejected proto (Greek for “first”, a prefix commonly used in such
situation) because the closest opposite would be deutero (Greek for “second”), which is not very well-known, and
causes cognitive dissonance in a sequence of more than one metaprogramming stages. I rejected pre/post because
preprogramming sounds too close to preprocessing which is related but more restricted, and pre is also too close
to prae which was a candidate for another dimension; so all in all more confusions to have to explain away. I
rejected paleo/neo (Greek for ancient/new) that refer to evolution in time, argo/teleo (Greek for start/end) that
are too unfamiliar and have absolute connotations that don’t resonate nicely with composition of metaprograms,
ana/kata (Greek for up/down) that correspond more to our second dimension of metaprogramming below,
geno/pheno (Greek for producing/showing) that do match the biological analogy with genotype and phenotype
but would require more explaining, gene/here (Latin for genitor and heir) or some variant of goneo, matro,
patro / paedo, pedo, tekno, oo (Greek for parent, mother, father / child, child, son, egg) also for requiring too
much explanation, dino/lamvano (Greek for give/receive) for being too obscure, and stoma/procto (Greek for
mouth/anus) that nicely clarify the flow of information but induce a disturbing scatological metaphor when
composing metaprogramming stages.

3The usual notion of quotation, as per the Lisp special form quote is a syntactic process that works at compile-
time on what is already a meta-level representation of a base program to yield a meta-meta-level representation
of a meta-program generating that base-program. A corresponding reification function that works at runtime
on a base-level value to yield a meta-level representation is called kwote is old Lisp lore, so if we wanted to stick
closely to established usage, we might have to call kwotation the process of computing an anteprogram from a
postprogram.

4I rejected “evaluative” or “temporal” which fit somehow but cause too much confusion with related but
different concepts in computer science, or “horizontal” which works well with the second dimension below but
not when taking the third into account.



1.3. THREE DIMENSIONS OF META-COMPUTATION 23

1.3.2 Implementation

Our second dimension of “meta” in software is when a program, the metaprogram, precisely
implements at runtime the semantics of another program, the base program. The metaprogram
may handle all kinds of additional lower-level implementation details, such as the allocation of
various base-level objects and variables into memory locations, or the scheduling of underlying
threads of execution, or the mapping between language-level entities and database storage, etc.
These behaviors are not aspects of the base program that users care about, and are not even
expressible at the level of abstraction at which users interact with the base program. Yet they
are necessary for the efficient evaluation of the base program on the underlying hardware.

The important way that such a metaprogram is “meta” is that it runs below the level of ab-
straction of the base program above it. This is ironic, since people often picture a metaprogram
as being “superior” and “above” the base program, due to it having more expressive power, and
one of the meanings of the Greek word “meta” is indeed “above”. To describe this phenomenon,
I propose that the (Greek) prefixes hypo (below) and hyper (above) be used.5

We call interpretation the process of taking a low-level (state of the) hypoprogram and com-
puting the high-level (state of the) hyperprogram that it implements, represents, denotes, means,
or otherwise corresponds to. As Cantwell Smith notes[24], this is well-established meaning of
the word interpretation though one different from the also well-established meaning used pre-
viously when discussing interpreters as anteprograms. The two meanings while related are
different enough in different enough contexts not to be the occasion for much confusion. In this
thesis we mean mostly this semantic denotation rather than the previous runtime execution,
unless explicitly specified otherwise.6 We say that a hypoprogram implements a hyperprogram,
and that the hyperprogram is implemented by the hypoprogram, or is the interpretation of the
hypoprogram, or that we can interpret (a state of) the hypoprogram as having for meaning (a
corresponding state of) the hyperprogram.

Conversely, we call implementation the process of taking a high-level (state of the) hyper-
program and computing a corresponding low-level (state of the) hypoprogram. As we will see,
this also matches the common use and understanding of the term “implementation”.

This dimension of metaprogramming we will call implementative.7 Note how for this di-
mension we choose the word for the “reification” process going from base to meta, because
“implementation” more precisely suggests what this dimension is about than “interpretation”
that while correct leaves too much to interpretation and imagination. This contravariance will
reappear many times in this thesis.

5I would have prefered be consistent in using either all Latin or all Greek prefixes, but the common use of
meta conflicts with Greek in the first case. The somewhat common use of the prefix sub to denote temporal
inclusion in a subprogram or subroutine precludes the choice of the latin super and sub as prefixes. I could have
proposed ana (up) and cata (down) but I figure that hypo and hyper are more familiar prefixes, and there is
also an existing use of ana and cata in category theory, that is unrelated, whereas hypo and hyper seem to be up
for grabs. I could have proposed the latin prefixes supra (above) and infra (below), and that could have worked
well with the notion of infrastructure, but I figured the greek prefixes sound better with fewer opportunities for
confusion. Other prefixes were rejected for requiring too much explanation, including rhizo/clado (Greek for
roots/branches) which actually work quite well in many ways including the foundational and branching aspects,
or steato/ligno (Greek for fat/slim) which alludes to the increasing amount of details in implementations, or
symbolo/hermeneu (Greek for symbol/explanation) which is literally true but too obscure.

6As we’ll see, this meaning is also related to abstract interpretation, though the latter usually denotes compile-
time analyses from the source program without runtime information to lossy approximations thereof above it
in terms of types and such, rather than runtime correspondances from a detailed level below that of the source
program to the level of semantics the source program (plus other runtime information such as environment,
continuation, etc.).

7I rejected “interpretive”, “abstractive”, or “semantic”, which fit somehow but cause too much confusion with
related but different concepts in computer science, or “vertical” which works well with the first dimension above
but not when taking the third into account.
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While countless publications touch the topic of Implementation, none seems to have a general
theory of what Implementation is or should be. The first two parts of this thesis will be dedicated
to exploring a universal theory of this second dimension of metaprogramming, Implementation.

1.3.3 Control

Our third dimension of “meta” in software is when a program, the metaprogram, surveys and
controls at runtime the behavior of another program, the base program. Many Meta-Object
Protocols and Meta-Level Architectures have been proposed in the past[citation needed] and even
though these terms haven’t been en vogue since the early 1990s, today’s software is ripe with
many such kinds of controlling meta-objects, though under other names, without a unified
architecture, and with less dynamic control than in the old language-based meta-object systems:
graphical control panels, configuration or settings menu, language servers, interactive debuggers,
tracers, loggers, monitors, consoles, virtualization managers, user-level filesystems, data buses,
middleware, etc. Configuration files and command-line options that are checked at startup by
the program itself can be considered a degenerate case where a notionally distinct one-shot
controller metaprogram was transcluded in the program itself, for lack of better infrastructure
to achieve the same purpose within the context of distributing “executable files” to the end-user
on current operating systems.

To describe this phenomenon, I propose that the (English) prefixes fore (front) and back
(back) be used. If the fore-program is what occupies the front stage that users want to interact
with, the back-program is all the supporting work that happens in the back stage that most
users do not usually want to have to deal with, yet that pull the invisible threads that control
the puppets that the users do interact with.8

We will call control the association from a foreprogram (base program) to the backprogram
(metaprogram) that controls it. Conversely, we will call manifestation the correspondance from
a backprogram to the foreprogram that it controls. We will say that a backprogram controls a
foreprogram, and that the foreprogram manifests the backprogram.

This dimension of metaprogramming we will call controlling.9

While many publications describe specific control gadgets, the topic of a general architecture
for runtime control mechanisms seems largely abandoned since the demise in the mid-1990s of
various object systems sporting meta-object protocols; and even these systems were isolated
general-purpose but system-specific experiments that didn’t attempt a universal theory of Run-
time Control. The last two parts of this thesis will be dedicated to exploring a universal theory
of this third dimension of metaprogramming, Control.

1.3.4 Three Independent Dimensions

Generation, Implementation and Control are three independent dimensions that one may go
“meta” about a program: One may go “meta” by going “ante” and neither “hypo” nor “back”;
One may go both “ante” and “hypo” but not “back”; etc.

8I rejected the piso / empro (Greek for back and fore directions), plati / prosopo (Greek for a body’s back
and face) or as wholly unknown and unsuggestive to English speakers. I also rejected retro / prae (Latin for
back and fore directions), and para / pro (Greek prefixes for the back and fore of a scene in theater), because
these prefixes have conflicting connotations as otherwise used in English. Finally, I rejected inner / outer or
the Greek endo / exo as suggesting too much of a static, essential, irreplaceable relationship between the two,
when the relationship between backprogram and foreprogram is intended as very dynamic in general; maybe
they could be used if we ever need a name for a static variant of control.

9I rejected “contextual” to qualify this dimension. There was no proper name for a dimension to complement
“horizontal” and “vertical” and “depth” didn’t quite work.
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One may also combine several steps of “ante” and “post” with a different number of steps of
“hypo”and“hyper”and of “back”and“fore”, and build three dimensional circuits along all three
axes. When considering such transformations, it might not even make sense to distinguish a
particular program as “meta” rather than “base”: that status only makes sense relationship to
another program in the given transformation circuit, and changes in a different relationship.

We will be careful to specify precisely what we mean when we speak of “metaprograms”
and “base programs”. Actually, in the rest of this thesis we will avoid the terms “meta” and
“base” and instead systematically specify “ante”, “post”, “hypo”, “hyper”, “back” and “fore” as
appropriate. We will similarly avoid the nouns “reflection” and “reification” to use the nouns
“generation” and “quotation”, “interpretation” and “implementation” or “control” and “mani-
festation” as appropriate. Similarly we will avoid the verbs “reflect” and “reify” to use verbs
“generate” and“quote”, “interpret” and“implement”, or “control” and“manifest” as appropriate.

We will represent the first dimension of generation horizontally, with ante to post going
from left to right, as is common when representing stages of evaluation in time.

We will represent the second dimension of implementation vertically, with hypo to hyper
going from bottom to top, as matches the notion that concrete implementations with more
details are lower-level than more abstract interpretations with fewer details that are higher-
level.

And we will represent the third dimension of control as notional depth, with back being
distant from the reader and fore closer to him, as matches the notion that the backstage is
hidden from spectators behind the front stage.

Note that beside common convention, there is a good reason why the relationship between
“meta” and “base” system indeed goes in the direction we specified and not the other way
around: in each case, the “base” system is closer to what the end-user sees, it expresses fewer
details that “reflection” from “meta” to “base” forgets and that the “reification” from “base” to
“meta” has to reconstitute often involving some arbitrary choices or programming context that
the end-user never sees nor cares about.

Also note that these three axes do not precisely match any of the notions of“computational”,
“procedural”,“structural”or“behavioral”reflection sometimes seen in the literature[citation needed].
We couldn’t see a definition of these notions that multiple authors agree on, nor a formalization
that would give them an objective meaning.

Finally note that since we introduce in this thesis the concept of these three dimensions
of “meta”, other works in the field of reflection should not be expected to use a compatible
nomenclature at all. We will consistently use the nomenclature in this thesis. The above
definitions are only authoritative in the current thesis, and while we will take care to use them
consistently, readers should be careful when matching our terms with the same terms or different
terms as used by other authors.

1.3.5 Metaprogramming as a Social Activity

Now of course, the most common case for metaprogramming is syntactic abstraction: a higher-
level language, usually a Domain-Specific Language (DSL) or a syntactic extension to an existing
language, is offered to users to express their concerns as a hyper -program at a suitably high
level of abstraction; simultaneously, an ante-program defines how this hyper -program is to be
translated into a hypo-program in the lower-level language. The resulting post-program is what
will actually be run by the end-users. Furthermore, some effects can be factored out into
back -programs to keep the fore-programs simpler but also easier to distribute and upgrade.

Note how to every ante there is a post and to every hypo there is a hyper. In the end,
metaprogramming is not about “moving” programs in one direction so much as factoring pro-
gram development, along three dimensions: Without metaprogramming, these dimensions are
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often left implicit, confused or interspersed together, for instance using unsafe and inefficient
naive interpreters, often fraught with dangerous inadvertent puns. Using metaprogramming,
the three dimensions can be clearly distinguished, labor can be divided along well-defined sur-
faces, and it becomes possible to reason about code while abstracting away each side from the
other.

Metaprogramming therefore has an important social role: it enables more efficient division
of labor, and thereby more affordable production of more robust and more elaborate programs.
Its division of labor enables better specialization of tasks in an otherwise increasingly complex
world. It allows each developer to cultivate and leverage their comparative advantage, whether
at understanding a domain in which to write or reason about domain-specific hyperprograms,
or at growing expertise about anteprograms that can more efficiently generate hypoprograms
for those hyperprograms, or at creating or managing backprograms that alleviate the need
for other programmers to manage some aspects of computations so they can focus on simpler
foreprograms.

1.3.6 The Difficult Direction

The “reflecting” direction of meta-computation, whether it means “generating”, “interpreting”
or “manifesting”, is usually well-defined, straightforward, possible and easy in any existing
computing system: the processors that do it are readily available without any special care
given to implement “reflection”. Your existing compiler, your existing runtime, your existing
configuration manager, already support it.

Moreover, many manuals, tutorials, books, articles, essays, explain how to write your own
compiler for your language, your own program execution runtime, or to a point your own virtu-
alization or configuration engine — all in ways that will be fully compatible and interoperable
with the system-provided equivalent, without having to resort to any magic trick or unsupported
system feature.

However, “reifying” is the operation that is seldom supported, or only in very limited ways.
It is a lot of work to quote a program, with no common convention for program representation,
no common library to draw upon to manipulate programs except invoking the usual compiler
the hard way on the entire program. The implementation of a program state is usually com-
pletely opaque, with unreliable ways to inspect and modify the low-level state that void any
implementation warranty when used. And the notion of controlling meta-object is mostly ab-
sent from common language design and operating system architecture, except for very ad hoc
tools.

Moreover, even if you implement this “reifying” the hard way, which you will mostly have to
do without documentation on how to do it, your code will in no way interoperate with system-
provided tools, unless you spend a lot of time reverse-engineering how things are done, and even
then the result will be fragile as the system evolves. You will have to reimplement the entire
system (possibly as a “virtual” variant on top of the existing system), or learn and embrace the
internals of the current system (if published and accessible at all) to achieve “reification” in a
way such that users can modularly reify small bits of programs without each having to reify
the entire system.

The challenge in designing a“reflective”architecture will thus be to all formodular reification
of code — quotation, implementation, control — in ways that can be modularly reflected back
— generated, interpreted, manifested — such that developers can safely divide labor in smaller
components without each having to reimplement a complete reflective system.
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1.4 Our Contribution

1.4.1 Our Approach

Our approach differs from previous presentations of Reflection in literature, in at least following
ways:

• We put an emphasis on formal semantics, where previous works remained largely informal
or semi-formal, at best formally describing a single reflective system.

• We explicitly distinguish those three dimensions of metaprogramming above, considered
independently from any the notion of self-reference.

• We seek a modular architecture that enables division of labor along finer component
divisions thanks to these three dimensions of metaprogramming.

• Our formalism is not aimed at describing a single system that would happen to be reflec-
tive; instead, it describes a universal framework for metaprogramming, that applies to all
systems.

• Most of the systems we describe using our formalism are not “reflective” as such, as they
involve no self-reference at any point. However the overall system we describe is itself
necessarily reflective as a consequence of being universal.

• Reflection thus naturally emerges as we seek fixed points, which naturally appear when
building general meta systems that reason about other systems (but neither more nor less
so than any meta system).

• We apply the notions of reflection to modules of computations, well delimited along each of
the axes of metaprogramming: a computation after (post) a certain point, above (hyper) a
certain level, in front (fore) of given scene. We do not specifically seek notions of reflection
that apply to “the” computation (all-encompassing without reified context), to individual
objects (too small-grained for our approach), or anything else in between.

• As part of our categorical approach, our formalization of reification notably captures not
just states but also transitions between states, with their side-effects.

1.4.2 Our Plan

In the first part of our thesis, we present a general-purpose formal theory to describe the
operational semantics of various computing systems, and relations of implementation between
them. This theory as such is largely but a restatement of well-known techniques; however, it
allows us to introduce the key concept of Observability, thanks to which the abstract state of a
system can be recovered from the concrete state of its implementation.

In the second part of our thesis, we present a protocol to describe and manipulate imple-
mentations as first-class entities at runtime. This protocol can be seen as the computational
content that can be extracted from the previous logical theory. We discuss how to reinterpret
compilation, static type analysis or aspect-oriented programming in the context of this protocol.

In the third part of our thesis, we present potential applications of this protocol, and how
it can be used to reinterpret many existing techniques, and reimplement them in simpler ways.
For instance, a general concept of migration subsumes process migration, garbage collection,
zero copy routing, dynamic configuration or JIT compilation. It makes it possible to modify
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at runtime the semantic tower that implements a program. Other applications include the
modelling of fault-tolerance, optimistic evaluation.

In the fourth part of our thesis, we propose a runtime meta-programming architecture
based on the previous protocol, wherein every program has an associated semantic tower at
runtime, and an associated controller meta-program. This architecture may apply to any kind
of development platform, user interface shell, operating system, or distributed and virtualized
application manager. It may be considered as a reenactment in a more formal setting of the
reflective towers from the 1980s.
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The Semantics of Implementations
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Chapter 2

Formalizing Computations

2.1 Categorical Approach

2.1.1 Intent

We provide a general framework to represent arbitrary computations as categories, and imple-
mentations as relations between categories (category theorists say “profunctors”).

By “computation”, we mean the process of running any kind of a program in any program-
ming language, any Turing machine (universal or not), any expression in a variant of λ-calculus
or π-calculus or any other calculus, any bytecode running on a virtual machine, any binary
code running on digital devices, or even any configuration running on substrates other than
electronic devices, such as mechanical devices, analog devices, quantum devices or biological
devices.

We identify a computation with its operational semantics: a category whose objects (nodes)
are the possible states of the system, and whose morphisms (arrows) are valid labelled transitions
between states of the computation.

So as to avoid confusion with other meanings of the word “object” in computer science,
we will herein mostly use the layman terms “node” and “arrow” instead of the terms more
commonly used by category theorists, “object” and “morphism” (or “homomorphism”). We still
call “functor” an application from one category to another that preserves the composition of
arrows.

We require no prior knowledge of category theory, and remain elementary throughout.

2.1.2 Computations as Categories

When viewing computations as categories, nodes express the internal state of the system; arrows
between two nodes express computation paths that lead from one state to the other. Side-
effects and other interactions with the external world (if any) are encoded in these arrows, and
distinct arrows will represent distinct interactions, whereas indistinguishable interactions will
be represented by identical arrows.

At the level of abstraction offered by typical computer hardware, computations constitute a
category where a node is a record of the state of each CPU register, memory bank, or peripheral;
arrows are transitions between states, with I/O. More abstract systems could be described in
terms of a virtual machine with a data heap, a control stack, and program code; or in terms
of environment, store, and continuation; or in terms of whatever concepts suit the system at
hand.

31
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We will use diagrams such as the following one to describe assertions about operational
semantics. For instance, in the following diagram, we describe three nodes x, y and z in a
category S:

x y z
S

f

Se

There is an unnamed transition from x to y with an arrow in S, and a transition from y

to z, where the arrow is member of a subset Se of S, and has an effect f : presumably, Se is
a subset of S that allows certain kinds of side-effects, and the label f represents one of these
side-effects. For instance, when printing "Hello, World" on some virtual machine, you may
start from an initial state x, push the string "Hello, World" to the stack as you transition to
state y, then pop that string from the stack and print it as a side-effect, as you transition to
final state z.

2.1.3 The Category of Computations

The very purpose of our categorical approach is to describe structure-preserving correspon-
dence between completely different systems, the states of which may be described in completely
different ways.

A structure preserving correspondence Φ from a computation C to a computation A will
be called an interpretation of C as A, while the inverse correspondence will be called an imple-
mentation of A with C.

Given such an interpretation or implementation, we will say that C is the concrete com-
putation, or that it is low-level and A is the abstract computation, or that it is high-level. In
the context of several implementations that may be composed, we may also say that C is more
concrete or lower-level than A, or that A is more abstract or higher-level than C. We will draw
a diagram with C at the bottom and A on top as follows:

A

C

Φ

The reason the line is dashed is because these correspondences are partial functions, rather
than total functions. In other words, an interpretation of C as A is a total function from a
subset of C to A. See next chapter 3 for details.

Computations and interpretations are themselves the nodes and arrows of a larger category,
the category of computations. Implementations are the arrows of the opposite, dual, category.
Viewed as functions, they would in general be non-deterministic partial functions (i.e. relations),
mapping abstract computations to the many concrete computations that may implement them.

2.1.4 Internal and External State

For some formal semantics to properly capture the meaning of a computation, they must some-
how represent any relevant interactions with other systems. Depending on what one cares about,
these interactions may include or not include such things as external data inputs and outputs,
other side-effects such as printing, manufacturing a physical item, or otherwise controlling a
robot, or even timing, power consumption, and any other resource usage.
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The formalization these interactions can be done in two ways. One approach is to internalize
these interactions into the category, by encoding that which is being modified (messages received
or sent, resources used, etc.) as part of the internal state represented by a node. The opposite
approach is to externalize such state by collapsing together nodes that only differ in terms of
such interactions, and only distinguishing these interactions (if at all) through the arrows that
represent distinct interactions. From a categorical point of view, internalizing interactions is
more concrete: and there is an obvious forgetful functor from the more concrete view with
internal state to the more abstract view with external side-effects only.

When modelling interactions, it is sometimes useful to consider a separate category, called
the action category, the arrows of which represent all the possible interactions that one may
care about. This action category often has only one node (it is a monoid); but it can also have
several nodes, each representing a distinguishable “mode” in which the system might operate,
that might change during computation.

A computation is then specified as a category of states and state transitions, as well as a
functor from said category to an action category, called a labelling functor. The action associ-
ated to a state transition is also called its label. The actions represent the visible interactions
observable from the outside, whereas the state transitions represent the internal state of the
computation, that might not be directly visible, yet that drives the visible interactions.

Some action categories might themselves have more details than other action categories
and be more concrete, or have fewer details and be more abstract. When considering an in-
terpretation of a computation as another one, we will require that they be accompanied by
a corresponding interpretation of the concrete computation’s actions as the abstract computa-
tion’s actions, that makes the obvious diagram commute. (Draw this diagram) For such purposes,
we can identify a category without action category to a category whose action category is itself
in a trivial way.

2.1.5 Russell-Whitehead, not Curry-Howard

Note that our interpretation of computations as categories is distinct from the Curry-Howard
correspondence, and possibly the opposite.

In the recently very popular and wildly successful Curry-Howard correspondence[citation needed],
a node in a category is a type of computational objects or equivalently the logical proposition
stating that the type is not empty; and an arrow is a total function from one type to another
or equivalently an implication proof of one proposition given the other. This is a very powerful
paradigm with a lot of applications.

Our approach, however, relies on a different correspondence, whereby a node in a cate-
gory is a state of a computation, or equivalently the proposition stating that some computa-
tion can reach a valid end state; and an arrow is a trace that shows how one state can lead
to the other. Since Bertrand Russell’s and Alfred North Whitehead’s foundational Principia
Mathematica[citation needed] can be seen as using this approach to equating a proof to a trace
of what can be obviously seen as a non-deterministic computation (though they did not call
it that, for their work pre-dates computer science), we will call this the Russell-Whitehead
correspondence.

The two correspondences have a very similar flavor and are obviously related, but it is not
immediately clear how. We suspect that they can both be expressed as views of the same
phenomenon in Game Semantics[13]: In Game Semantics, each proposition describes a game
between two opponents, who respectively try to prove and disprove the proposition: a “run” of
the game determine who wins the argument; and the proposition is true if there is a winning
strategy using which the player arguing the positive may always win the argument whatever
moves his opponent chooses. It seems to us that by squinting hard enough, we can view
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the strategies grouped with the runs as programs, and naked propositions as types, whereas
strategies grouped with the propositions can be viewed as programs, and naked runs as traces.
However, this intuition may have to be formalized before it is either accepted or rejected.

2.2 Existing Formalisms as Categories

Category Theory provides a notion of computation that is simple and general; it makes it possi-
ble to unify, relate, combine and generally use together computations originally described with
different formalisms. Here are some familiar paradigms and how they map into our presentation.

2.2.1 Labelled transition systems

Our categories directly include labelled state-transition systems.[citation needed] We identify a
labelled transition system as a category where the nodes are the states of the system, and
the arrows are the labelled transitions from one state to another. The labels may represent
observable side-effects that happen when running the state-transition system.

Our categorical notion of Implementation (see next chapter 3) is broadly related to the
familiar notions of simulation and bisimulation between labelled state-transition systems, yet
distinct from either of them, as it fulfills very distinct purposes.

Bisimulations fulfill much stronger criteria than implementations: they try to model some
observational equivalence between computations (i.e. whatever you may observe about one, you
may observe about the other), whereas implementations model observational inclusion of the
concrete computation in the abstract computation (i.e. whatever you may observe about the
concrete computation is indeed valid about the abstract computation). Indeed, an implementa-
tion can make (implementation) choices such that the set of potential observable behaviors of the
concrete computation is a strict subset of the set of potential observable behaviors of abstract
system. For instance, the abstract computation may leave some evaluation order unspecified
and allow for many different orderings of observable effects, when the concrete computation
would pick a specific ordering, or a subset of the allowed orderings. The abstract computation
may also leave some parameters unspecified, such as the width of system integers, the length of
buffers, the bandwidth, latency and timeouts of communication channels, the number of pro-
cessors and their connection architecture, the names and passwords of users, etc., when some
concrete computation might either choose specific values for these parameters or merely refine
the constraints on them.

As for simple simulations, they have limited purpose beside being used as half the specifica-
tion of a bisimulation. They do not have to satisfy the basic soundness criterion for implemen-
tations (see subsection 3.1.4), whereas implementations do not have to satisfy theirs. On the
one hand, a computation can have many more transitions than the computation it simulates,
whereas for an implementation cannot, as that would be considered the concrete computation
lying about what the abstract computation can do. In an extreme case, a computation with one
node and arrows of every label from itself to itself can trivially simulate any other computation;
but it cannot implement anything but a superset of itself except with an empty (and useless)
implementation that has no observable state. On the other hand, implementations do not have
to satisfy the basic soundness criterion for simulations, and generally do not, for an imple-
mentation is allowed to optimize away and skip intermediate abstract states. The property of
an implementation that guarantees simulation in the sense of labelled transition systems, we
dubbed Completeness (see subsection 3.2.2).

In our categorical setting, labels can be expressed as a labelling functor from the category
S to a monoid Λ of labels. (A monoid is category with only one node and usually many
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arrows.) Labelled transition systems typically use a free monoid, one generated by the atomic
labels without any simplification rule. The subcategory of transitions with a null label can be
distinguished as that of “internal” computations, without observable side-effect. An additional
constraint that will be required of candidate implementations will be that the obvious labelling
diagrams should commute.

Variants of labelled transition systems that can similarly be viewed as categories include
Term Rewriting Systems or Rewriting Logic[citation needed], Hidden Algebra[citation needed], Ab-
stract State Machines[citation needed], and small-step operational semantics.

2.2.2 Operational semantics

There are many flavors of operational semantics[citation needed], but they can all be viewed as
categories.

Most obviously, small-step semantics or reduction semantics can be viewed as labelled state-
transition systems, and hence as categories, as above. A node or state of the category corre-
sponds to a record of a term being reduced and any accompanying reduction context. An arrow
or transition is a reduction. If there is any side-effect, it is represented as a label of this transi-
tion. In the absence of side-effects, the labelling functor is trivial and can be omitted. The set
of atomic steps constitutes a generator of the category (and is thus not itself a (sub)category
since it isn’t closed by composition).

Big-step semantics or natural semantics can be automatically translated to small-step se-
mantics as follows: a state of the system is the data of a sub-expression being evaluated, the
set of records of expressions reduced so far and the values to which they were reduced, and
the structural context of expressions that remain to be reduced. In the case that the order in
which to descend the structure is not specified by the big-step semantics, either an order can
be chosen, or transitions with an empty label can be introduced for each of the possible orders.

Alternatively, big-step semantics can be viewed as a category with very few arrows, only
those that go from expression to fully reduced value. Our categorical approach can also work
in this case; however such categories have fewer arrows, and are thus easier to use as abstract
systems to be implemented, and harder to use as concrete systems to implement other systems.

2.2.3 Modal Logic

A Modal Logic system can be viewed as a category. Nodes can be considered as state of
knowledge of the system, and arrows as modal events that cause the system to change and the
knowledge about the system to be updated accordingly. Temporal logic [citation needed] can use
quantifiers to discuss possible futures of a state. Linear logic [citation needed] can model non-
monotonous knowledge evolution. Hoare logic [citation needed], and more elaborate variants such
as Dynamic Logic [citation needed] are specifically designed to model computations. The subset
of arrows with trivial modality represent internal manipulation of knowledge (deduction, etc.)
without gain (or loss) of information. Refinements are then implementations between such
systems [18].

2.2.4 Partial Order

If we don’t care about transition labels, and identify morphisms with common start and end
objects, the category is a partial order, where a ≤ b iff b is a valid future or specialization for
a. This applies for systems where the state is completely internalized within the node-set and
there is no need to distinguish I/O effects using arrows. [citation needed]
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2.2.5 Denotational Semantics

Our approach directly models common uses of denotational semantics[citation needed].
One common use, the definitional interpreter, is to consider the mapping of some source code

to a known domain of computations, and posit the result as the meaning or denotation of a
program by definition. Such a definitional interpreter thus reduces the problem of understanding
the source domain to that of understanding the (usually known) (co)domain of computations
and that of understanding the (usually simple) mapping. The target computations will then
be the initial states of a computation in some well-known operational semantics, for instance,
terms of the lambda calculus or bytecode of some virtual machine, with an evaluation context
that is either implicitly empty or to be given as a parameter. This definitional mapping can be
seen as an implementation either way (see next chapter), and be made functorial by definition,
with arrows being decreed among source objects if and only if they exist among the target
objects. It effectively identifies the source domain to a full subcategory (i.e. a subset) of the
target domain. Thereafter, all study of the source computation has been reduced to the study
of the target computation.

The other common use of denotational semantics, for static analysis, is equivalent to ab-
straction interpretation.

2.2.6 Abstract Interpretation

Our notion of Implementation is directly related to Abstract Interpretation [5]; in fact, in a way
they are categorical opposite: i.e. they are very same phenomenon, but considered from the
opposite direction, as going from abstract to concrete rather than from concrete to abstract. An
Abstract Interpretation is also a partial functor between two categories, from one embodying a
concrete computation to another one embodying an abstract computation. However, there are
usually important differences in traditional usages of Abstract Interpretation and (Concrete)
Implementation:

• Both Abstract Interpretation and (Concrete) Implementation often take as input a fully
expressive programming language used by humans; but Abstract Interpretation goes “up”
from that language to a more abstract one, whereas (Concrete) Implementation goes
“down” from that language to a more concrete one.

• The underlying partial functor from concrete to abstract must preserve structure, must
be determistic, and may be lossy (forget information), when going from the concrete to
the abstract; the other way around, the opposite function is partial (an abstract state or
transition may fail to be implemented), non-deterministic (an abstract state or transition
may be implemented by multiple concrete ones), injective (a concrete state or transitions
implements a single abstract one), co-functorial (implementation need not preserve struc-
ture, only interpretation must), and noisy (it may add new information or noise that is
irrelevant to the abstract computation). Therefore an Abstract Interpretation usually does
approximations whereas a (Concrete) Implementation adds new implementation details.
For instance, the implementation may add a notion of memory addresses, execution time,
or specific processor that does each part of the computation in a multiprocessor system.
There maybe sometimes infinitely many possible ways to thus enrich the computation
structure. The interpretation may forget those details.

• Abstract Interpretation is usually used for static analysis of a computation, where the
dynamic evaluation context is unknown, and must be approximated by a set of all possible
evaluation contexts. The first step is then to consider the (usually non computable)
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way that programs operate on sets of values (rather than just values). Then, to itself
yield computable answers in finite time about potentially infinite computations in an
infinite number of contexts (and not being able to solve the halting problem), an Abstract
Interpretation must make significant approximations and lose information. By contrast,
a (Concrete) Implementation of a computation can neither forget nor approximate the
given dynamic evaluation context, but can only add new aspects to it.

• An Abstract Interpretation usually focuses on denotational semantics, and the end of an
analysis often yields types in an approximation lattice (wherein the arrows embody the
inclusion of sets of values and effects), or even in a discrete category (where said sets
are mutually disjoint). Not all source terms or intermediate products of analysis are well-
typed, hence the functor being partial. The whole point of the abstract interpretation is to
not compute, but predict facts about the computation before the computation even takes
place (if ever). By contrast, a (Concrete) Implementation usually focuses on operational
semantics; it evaluates a lower-level system that involves additional details, often with
performance as an important concern; it is only interested in a single evaluation context
at a time; it usually only yields one of the possible answers is supposed to be computable
(as contrasted with getting them all, especially when the language is non-deterministic).
The whole point of the implementation is to compute it indeed. The implementation is
not allowed to approximate, except in that it may sometimes fail to give an answer at all.

• An Abstract Interpretation usually has an adjunct functor going the other way, associating
to each approximation the set of values it includes; this is an artefact of the approxima-
tion used. In the case of a (Concrete) Implementation, the opposite partial functor of
interpretation does not usually have an adjunct (partial) functor, unless there is a canon-
ical way (up to equivalence) to implement an abstract computation using an concrete
computation. When this adjunct exists, it defines a compiler for the implementation.

2.3 Combining Computing Systems

It is useful to study algebraic operations that build more elaborate computing systems from
simpler ones. These operations can be used either as synthesis tools, or as analysis tools.
Category theory offers a wide tool box of such operations, including products and co-products
(sums), initial and terminal objects, equalizers, limits, pullbacks and pushouts, monomorphisms
and epimorphisms, functors, natural transformations, duality, monads, lifting, etc. These usual
operations all apply to Computations considered as a Category; but we won’t discuss most of
them, since there’s nothing special about applying them to Computations in particular. Instead,
we will focus on a few operations that are particularly common or remarkable when applied to
Computations.

2.3.1 Subcomputations and Supercomputations

It is often useful to consider cases where a computation is included in another. The included
computation is then called the subcomputation, and the including computation is called the
supercomputation. Formally, given a computation C as a category, a subcomputation of C is
the data of a computation S and a “canonical” embedding (i.e. injective total functor) j from
S into C. Typically j is assimilated to the identify function.

A subcomputation is “full” if the embedding is “full” in the usual categorical meaning: all
the arrows between two reached nodes are also reached. A full subcomputation is character-
ized by the subset of nodes it contains. Then the identity function is also a trivial injective
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partial functor from the supercomputation to the subcomputation (being total on a subset of
the supercomputation, namely the subcomputation). The two computations are therefore just
as concrete or abstract as each other. The full subcomputation may then for instance repre-
sent a computation where some intermediate states have been eliminated, making for larger
computation steps. If however some choices are removed in the subcomputation, then the su-
percomputation may still implement the subcomputation, but one that can get “stuck” into
cases not supported by the subcomputation (see section 3.2.3).

If your category is the computation of one program written in a language, it is a full sub-
computation of the more general category consisting of the computation of any program in that
language: The latter category contains all the possible states of all the programs and all their
state transitions; those of the specific program are an obvious subset. Of course, any given state
only represents a single program at a time (or many programs that are thereupon equivalent at
that point in the computation); in other words, when you pick a node in that category, you’ve
chosen a specific program (or equivalence class of programs).

Similarly, given a language, a larger language, containing more programs, will be a super-
computation, whereas a more restricted language, containing fewer programs, will be a full
subcomputation.

Hypotheses about the execution environment can be modeled by restricting the arrows in a
supercomputation (e.g. some erroneous transitions are assumed never to happen). We already
saw that internal computations, those without any input/output, could be modeled by the
subsystem of transitions with a null label. This can be generalized in various ways, to model
internally directed computations, those that do not depend on any input/output operation not
guaranteed to be feasible: for instance, input of ticks from the wall clock, read/write operations
on persistent media, communication with trusted servers, etc., are allowed, but input from a
human user or untrusted client are not considered.

More subcategories can model various kinds of restrictions on computations: resource limi-
tations, invariant preservations, hypotheses about the external world, effects previously approx-
imated away, “magic” behavior, etc.

These concepts of subcomputations will be used, but once again, this formalization is vol-
untarily large, so as to allow to express mappings between computations of various different
abstraction levels.

Note that whether adding arrows to a computation to achieve a supercomputation, or re-
moving arrows from a computation to achieve a subcomputation, it is not just individual arrows,
but a coherent set of arrows that must be added or removed, so that the resulting set is closed
via composition and indeed constitutes a category. A proper way to do that is to consider gen-
erators of the computations at hand (as in small step semantics), and add new generators in the
case of extension, or restrict the product set of generators (plus possible identity transitions) in
the case of restriction. A subset of a computation that is not a category will be called a subset,
and not a subcomputation.

2.3.2 Concurrent Computations

A family of computations can be made to run in parallel. When the computations run inde-
pendently, the resulting computation consists in the usual cartesian product of the family of
computations, considered as categories. [citation needed]

Expressing interaction between computations running in parallel can be expressed in two
complementary ways. In the first approach to expressing interaction, we start from computa-
tions that do not include any arrows for I/O, an extend their cartesian product with arrows that
express internal communication by simultaneously modifying the state of several computations.
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Arrows that do not involve such communication are called local transitions or communication-
free arrows. Arrows added to the computation are non-local transitions or communication
arrows. In the second approach, we start from computations that each communicate with its
outside world, and restrict their cartesian product so that the effect I/O operation done by one
of them is reflected by simultaneous corresponding I/O operations in other ones. In categorical
terms, the resulting system is a pullback, i.e. a constrained product where some interactions in
one computation are each identified to a complementary interaction in the other computation.
The cartesian product is then the particular case where the two computations are independent,
with no interations in either computation to identify to interactions on the other.

A concurrent computation is a computation thus achieved by modifying or constraining the
arrows of a cartesian product. The computations in the cartesian product are the components
or processes.

Note that being a concurrent computation is not an intrinsic property of the computation as
a category, but an extrinsic property of its formalization, that depends on the way it is built or
viewed as the modification of a cartesian product. Indeed, up to isomorphism, any computation
could be butchered into components in arbitrarily many ways, with ad-hoc arrows being added
or removed to fit the desired computation. Most such decompositions into components are
useless; sometimes, several different decompositions of the same computation as a concurrent
computation can be useful each to prove an appropriate property. We’ll see examples of that in
sections 2.3.2 and 6.2.3 below. As says Lamport, processes are in the eye of the beholder [17].
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Chapter 3

Properties of Implementations

This chapter is mostly an extension of the formal parts of our 1999 article “Formalizing the
Notion of Implementation” [22], and a generalization of its concept to computations with I/O.

3.1 Definitional Properties

3.1.1 Intent

Given a higher-level “abstract” computation A and a lower-level “concrete” computation C, an
implementation of A with C is the inverse Φ−1 of a partial functor Φ from C to A. It is then
said that Φ−1 implements A, or by extension that C implements A (using Φ, which may be
implicit). Φ being a (partial) functor means that it preserves the observational semantics of the
abstract computation: observations done on the concrete computation C are consistent with
observations that would have been done “directly” on the abstract computation A.

In one class of implementations of interest, the abstract computation is a modern high-level
programming language, and the concrete computation is a process running on some given virtual
machine. In another class, the abstract computation is the process on the virtual machine, and
the concrete computation is a process running on some actual CPU. In yet another class, the
abstract computation is whatever the user may observe, and the concrete computation is the
program as evaluated by the modern high-level programming language in which it was written.

More generally, the two computations are any two levels of program representation that are
respectively input and output of some compiler pass or series of passes. Each implementation
can thus represent either the entire semantic tower rooting the execution of some high-level pro-
gram onto a low-level machine, or a thin layer that focuses on the details of one implementation,
or any small or large “slice” between two levels in that tower.

Note however that these computations are not compile-time only entities: they include
runtime state such as a control stack, a set of bindings, a data heap, memory mappings, open
file descriptors, other interactions with the Operating System, etc. Programming languages
must be considered together with their actual runtime support, and with any linked libraries
written in the same or a different programming languages, or with non-standard extensions,
using extended operating system features, various configuration settings, or machine-specific
capabilities. When analyzing the semantics of a program, anything that partakes in its behavior
must be taken into consideration. On the other hand, we often are only interested in a small
fragment of a larger computation, at which point a whole lot of irrelevant details can be omitted.

41
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3.1.2 Partiality

An implementation is a partial functor, which means a structure-preserving function (functor)
where not all point in the domain have an image (partial). It is important to not consider
only total functors, because the operations that are atomic in the abstract computation are
not generally available as atomic operations in the concrete computation, and vice versa, as
illustrated in the diagram below:

{puts("Hell");puts("o");} {puts("o");} {}

{(Hello) show} (Hello) {show} {}

"Hell"

C

"o"

C

PostScript

(Hello)

PostScript

In this diagram, a computation in a hypothetical C-like language is implemented by compu-
tation in a hypothetical stack machine language. The abstract computation outputs a string,
then another one. The concrete program directly writes the concatenation of the two strings.
The abstract operational semantics is defined in terms of a continuation k and with the effect
of outputting a stream of characters. The concrete operational semantics is defined in terms of
a data stack s, a continuation k, and also the effect of outputting a stream of characters. The
abstract state where one of two strings only is output is not implemented. The concrete state
where a string is pushed to the stack is not represented. Yet the concrete computation reaches
an end state which can be interpreted as having had all the specified effects of the abstract
computation.

3.1.3 Bicolor Diagrams

An implementation Φ−1 of A with C is a partial functor from C to A, which once again we
represent with this diagram, where the dashed line indicates partiality:

A

C

Φ

In traditional category theory, arrows usually represent total functors. Thus we have to
draw the following diagram to represent the same thing, where O is the full subcategory of C
the elements of which are “observable” by having a meaning in A, j is the canonical inclusion
of O in C (the arrow fin signifies that j is injective), and φ is a total functor from O to A:
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A

O

C

j

φ

Now we can define a partial functor as being just the above and draw it in a dashed line.
The logical introduction rule for such a diagram would look like this:

A A

O

C C

j

φ

Φ

However, for the sake of smaller, more readable diagrams, we will adopt the convention of
writing such rules by drawing hypotheses in black ink and conclusions in blue ink. Thus, the
above introduction rule we will more simply draw as follows:

A

O

C

j

φ

Φ

Similarly, we can define element association by a “partial function” in terms of element
association by the underlying function and injection, with the following diagram:

a

o

c

j

φ

Φ

Note that in the above diagram, j is notionally an inclusion, and thus o is equal to c, at
least morally: o = c. In this thesis, we usually speak only of c; we omit to explicitly distinguish
o as a separate entity. We similarly also only speak of Φ or Φ−1, and leave φ and j implicit
unless when specifically needed in formulas.

Given a node c of C we say that it is observable when there exists an element o of O that
is equal to c; otherwise we say that c is not observable. We similarly extend the notion of
being observable to arrows of C. O being a full subcategory of C, an arrow is observable if and
only if its domain and co-domain (starting and ending nodes) are both observable. When an
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observable arrow in C can be decomposed as the product of two arrows, then the node where
those two arrows meet is called an intermediate computation state, like c′ in the diagram below:

a a′′

c c′ c′′
C

Φ

C

Φ

Partiality is important; it is the fact that not every state is observable: the concrete system
C may well contain transitions that are subatomic with respect to the invariants exposed by
the abstract system A: in the proverbial transfer of money from one account to the other, the
abstract system A is not allowed to see the accounts while some amount has been debited from
the source and not yet credited to the destination (or the other way around); but at the level
of C no such atomic operation may be available, and there will be intermediate states that
temporarily violate the invariants of the abstract system A.

Partiality thus accounts for the fact that not every concrete state is “stable” or “observable”
with an abstract meaning; not every concrete transition corresponds to an abstract transition;
intermediate concrete states may break abstract invariants; intermediate concrete transitions
break the atomicity of abstract transitions; concrete optimizations may short-circuit interme-
diate abstract transitions; etc.

3.1.4 Soundness

The most essential property for an implementation is to never give wrong answers.

It’s often acceptable for an implementation to fail to give a correct answer: the computation
might take too much time, or consume too much memory, or run out of some other scarce
resource; some malfunction or external event may cause the computer to crash. But a wrong
answer may cascade into other computations and cause a wider downstream computation to
fail, and cascade to the user with potentially catastrophic results: some human may take the
wrong decision, some device may cause a deadly accident. Even in more day to day scenarios,
every wrong answer is a failure of the computing system to do what it was supposed to do.

The diagram that describes this property is as follows:

a a′

c c′

A

C

Φ Φ

In informal terms, any observable (intermediate or final) result that may be reached by
computing in the concrete system must correspond to a valid abstract result that could legally
have been obtained by computing in the abstract system.

We will call this property soundness. It is such an essential property that we will require
from every candidate implementation that it shall be sound, or we will not consider it an
implementation at all.

This property can be equivalently restated in different ways:
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• If by computing from an (observable) concrete implementation c of a, we can observe
an (intermediate or final) concrete state c′ that can be interpretable as abstract state a′,
then a′ must be a correct result that could have been found by doing computations purely
within the abstract system.

• Any abstract observation made by observing and interpreting the concrete system must
be valid in the abstract system.

• The basic reduction structure of the computing systems must be preserved by φ.

• In categorical terms, this is summarized by saying that φ must be a (covariant) functor.
Actually, functoriality also implies preservation of arrow composition; we will indeed
require that all diagrams involving arrow composition shall commute.

• All the answers computed thanks to the implementation are correct.

Notice that structure preservation happens in a way that is contravariant to the direction
usually thought of as an “implementation”: it is the “interpretation (partial) function” Φ that
preserves structure; and it goes in a direction opposite to that of the “implementation (non-
deterministic) function” Φ−1. In categorical words, the theory of implementation is inherently
decompositional, rather than compositional. We may argue that it explains the utter failure
of so many attempts to build compositional meta-objects framework. Another way of seeing
things is that this approach explores semantics in a way reverse to that followed by abstract
interpretation and static analysis, that study interpretation functions and their nice properties.
All this justifies our privileging Φ as the object of interest, as far as nice semantics are concerned.

Note that by definition of O as a full subcategory, it is given that j be structure-preserving.

Soundness is a composable property: if Φ−1 is a sound implementation of A with C, and
Ψ−1 is a sound implementation of C with D, then Ψ−1 ◦ Φ−1 is a sound implementation of A
with D.

To illustrate the difference between sound and unsound, consider computations on natural
numbers, where the states we observe are those when the system yields results. An implemen-
tation with fixed-precision integers will be sound if it traps on overflow; any result it will may
yield will be correct. An implementation with fixed-precision integers that silent wraps compu-
tations that overflow is not sound (at least, not in the eventuality of such overflow), and may
yield wrong results when initial conditions imply too large numbers during computation. Note
that soundness does not mandate termination. It only mandates that in case of termination or
legal observation, the implementation must yield a correct result. It is always sound (according
to this definition) for an implementation to fail to answer; of course, answers are desirable
when possible, but misleading incorrect answers are worse than no answer. When designing
mission-critical systems, it is sound (according to this definition) not to come with a design,
but unsound to come with a design that might kill people under intended use conditions.

This notion of soundness is well established under this name in computational logical [12].
It has been called “safety” by Lamport [16]. Goerigk called it “partial correctness” [11], where
“partial” corresponds to the fact that Φ is a partial function rather than a total function.

The computational content of soundness is that we can use (partial) operational execu-
tion of the concrete computing system as a valid substitution (modulo translation via Φ) to
(partial) operational execution of the abstract computing system — which is precisely what
implementations are all about.
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3.2 Optional Properties

3.2.1 Intent

We study several properties that may or may not be interesting for an implementation to have.
Some of these properties are pretty obvious and well-known: completeness and its many

variants are properties that tell how closely you can go from the abstract computation to the
concrete computation; liveness and its many variants are properties that tell how progress in
the concrete computation guarantees progress in the abstract computation. co-liveness and its
many variants are properties that tell how termination in the concrete computation guarantees
termination in the abstract computation. We will use them as benchmarks to illustrate how
our formalism can help reason about these common concerns that implementers face.

However, another of these properties, observability, tells how you can go from the concrete
computation back to the abstract computation. We believe it is vastly underrated — and
pinpointing its importance might be the single major contribution of this thesis. Observability
generalizes the notion of safe point, as a node from which an abstract meaning can be recovered
from a concrete computation. All who develop of concurrent implementations of programming
languages have to deal with one or multiple such notions. This notion is crucial to the rest of
this thesis, in which we will argue that having formalized it trivializes a variety of so-far difficult
applications.

The properties in this section do not in any way exhaust the range of what one may find
interesting about implementations. For instance, some programmers will care a lot about
some kind of side-effects, such as I/O channels, user-interface behavior, real-time constraints,
etc.; then an all-important property they would require from every implementation might be
that some promises made by the abstract computation regarding those side-effects are indeed
fulfilled by the concrete computation. Now, the previous formalization framework in terms
of categories is general purpose. Whether with diagrams such as those we use, or with more
general logical formulas, one can capture the relevant aspects of computations, and specify any
desired properties pertaining to these aspects Of course, some aspects may not be particularly
easy to formalize, such as whether a concrete computation does a good job of providing a
usable graphical interface when implementing an abstract “interface” to data structures as
concrete pixels on a screen that change color with time. But that’s an issue with the limits of
mathematical formalization in general, not with this particular approach.

In the rest of this section, we’ll consider as defined above an implementation Φ−1 of an
abstract computing system A with a concrete system C, given by Φ = φ ◦ j−1 where O is the
subcategory of observable states with a canonical injection j : O −→ C, and an interpretation
function φ : O −→ A.

3.2.2 Completeness and its variants

Rename“Completeness” to“Controlability”,“Complete” to“Controlable”??? XXXX

A family of properties

Completeness and its variants form family of properties that one may desire in an implemen-
tation, that follow the general pattern: “if you can do something in the abstract computation,
then you can the same something in the concrete computation”. In informal terms, you can
control your interaction with the concrete computation in terms of the concepts meaningful to
the abstract computation.

All these properties are composable (except noted otherwise): if two implementations have it
and can be composed, then the product of their composition has the same property too, because
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from the abstract something we can get the same something in through the first implementation
in the intermediate computation, then the same something through the first implementation in
the concrete computation.

These property is important to show that an implementation captures all of an aspect that
one cares about; or, when composing many implementations, this property can help ensure that
blame for failing to capture all of that aspect must lie in a particular implementation step that
fails to possess this property.

In particular, it is not possible to have a total implementation of an infinite computation
with a finite computation (by a simple counting argument). Therefore, the best that can be done
usually is either to restrict oneself to finite computations (and e.g. prove bounds on memory
and time required), or to prove totality at every step but one in a tower of implementations:
that crucial step will represent a potentially infinite graph into finite memory by assigning
memory addresses to graph nodes; it is not total and may fail with a memory overflow error;
but all implementations above are total from one infinite computation to another, and all
implementations below are total from on finite computation to another. Totality failures have
been contained, if not eliminated.

Completeness

The following version of this property, we’ll call completeness, as defined by the following
diagram:

a a′

c c′

A

C

Φ Φ

Informally, if you currently start from a concrete computation state c that is observable and
has meaning a, and if you consider a transition from a to a′ in the abstract computation A

(with whatever side-effects allowed in A), then there is a state c′ that is observable and has
meaning a′, and a transition from c to c′ in the concrete computation C (the side-effects of
which map into the side-effects of the previous abstract transition).

Completeness is useful when you want to manually control how and how much a computation
advances, and what choices it takes along the way (if evaluation isn’t deterministic). This is
important when the computation is controled by some outside system, such as an interactive
debugger, a recording of some past run, a search heuristic, etc.

When the computation is a labelled state transition system, completeness means that the
implementation is a simulation (not the interpretation).
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Totality

Totality is an even simpler variant in that theme, as defined by the diagram below:

a

c

Φ

This property “just” means that φ is surjective, when considered as an application from
node to node. In other words, any given abstract computation state a can be implemented as
a concrete computation state c.

This property is very important e.g. to show that a compiler can handle all cases specified
in the abstract language, or to show that the deficit in cases that can’t be handled is confined
to a few well-specified cases.

You could consider a variant of totality that works on any arrow, and given a and a′ finds
both c and c′. But then, c could never be guaranteed to be what you want, and c′ could never be
guaranteed to be a useful node from which to continue computation — unless you are willing to
depend on further properties to provide such guarantees. But at that point, you are better off
requiring from the implementation both totality and fullness (see Strong Completeness below).

Fullness

Fullness is being able to implement all arrows between implementable nodes. This means that
φ is a full functor, i.e. it is surjective when restricted to arrows between any two objects. The
corresponding diagram is as follows:

a a′

c c′

A

C

Φ Φ

The implementation preserves the full richness of the abstract computation, so that many
properties can be transfered from one computation to the other.

However, fullness is computationally expensive, since it requires arrows between any two
concrete representations of arrow-related abstract states, and in particular any two concrete
representations of a same abstract state. So, any path-dependence or non-deterministic choice
in representation must be reversible inside the system.

Strong Completeness

Strong Completeness is the conjunction of fullness and totality: surjectivity of φ for both nodes
and arrows between given nodes. It implies completeness: given a, c, a′, use totality to deduce
c′ then fullness to deduce the arrow from c to c′. In general, it is computationally less practical
than completeness, since using totality will pick c′ without knowledge about c, then may have to
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pay a high price undoing any choice embedded in c to instead implement the choices embedded
in c′. This may not be much of an issue if there are no implicit choices made when representing
an abstract state, and it all representations are “canonical”; but that’s not the general case.

Weak Completeness

Weak Completeness is a weaker variant of completeness whereby the abstract user can specify
an abstract arrow as a “direction” in which to compute, and the concrete computation must be
able to compute “in that direction”, but need not stop exactly at the tip of that arrow: instead
the concrete computation may go “past” this tip as it keeps computing, and only stop some
time after; how far it stops after the target may be controlled by a subset As of A in which
that extra step is constrained to remain. The corresponding diagram is as follows:

a a′ a′′

c c′′

A A

C

Φ Φ

3.2.3 Liveness and its variants

Another family of properties

Liveness and its variants form a family of properties that one may desire in an implementation,
that follow the general pattern: “The abstract computation will advance given sufficient advance
in the concrete computation”.

All these properties require some measurable notion of advancing, for instance based on a
subset of strictly advancing arrows, itself possibly generated from a subset of “atomic” arrows.
Given compatible enough notions of advancing, these properties will usually be composable.

They are important to show that the implementation cannot get “stuck”, that it will keep
advancing and making progress until it reaches an answer from which no further progress can
be made.

Sometimes, the advance will be conditional on some adverse event not happening (e.g.
running out of memory) or not happening too often (e.g. the power going out). As with the
previous families of properties, proving (unconditional) liveness for each step but one (or a few)
in a tower of implementations allows to contain liveness failures to one set of well-understood
failure modes at one (or a few) levels of abstractions.

Advancing

The liveness family of properties assume that each computation X comes with a subset X+

of arrows that “advance” in X. Importantly, X+ is closed by composition on either side with
arrows in X (this encodes the fact that advance is irreversible), and X+ doesn’t contain identity
arrows. The complementary subset X0 = X \X+ of arrows that don’t advance is also notable:
it always contains the identity arrows, but it may contain additional arrows. Depending on what
one is interested in viewing as “advancing”, the non-advancing arrows may or may not include
arrows that encode reversible changes in representation, “administrative” changes, uncommit-
ted transactions, internal computations without “observable” input or output or side-effect, or
interruptions and recovery from interruptions.

A very same computation (e.g. as an isomorphic category) can typically be equipped with
several (infinitely many) notions of “advancing”, depending on what one is interested in. The
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“advance” subset only includes arrows that correspond to a change in some abstract view (or
combination of abstract views) of the state of the system and/or other systems it interacts with;
such change might be: internal change in one or more among identified interesting variables
that define the system; more generally change in the internal state of the system up to some
equivalence function; consumption of input from a particular channel or in general; production
of output onto a particular channel or in general; observation of some non-deterministic choice;
deterministic update of the state of the system after some computations; etc. Arrows that do
not affect the considered abstract view of the system are then not considered as “advancing”.

In the context of implementing advancing computations, we will often require that non-
advancing shall preserve observability, as per the following diagram:

a a′

c c′

As

Cs

Φ Φ

Liveness

Liveness is the property that if C will advance, then A will advance. We will define it formally
with the following diagram:

a a′

c′

c c1 c2 cn

A+

Φ

C+

Φ

C+

The property asserts that for any infinite sequence of advancing concrete computation tran-
sitions, there is an integer n such that the abstract computation has strictly advanced before
concrete computation reaches the nth transition — the concrete computation will spontaneous
“go past” more advanced abstract states as it itself advances.

Note that given the hypotheses, it is not usually possible to guarantee that any of the ck will
be observable. Indeed, unless all (or most) elements of C are observable, then it is possible to
select every ck so that they are all non-observable intermediate states. However, for a stronger
property see Strong Liveness below.

Liveness is a composable property. If we look at temporal logic statements on transitions,
liveness ensures preservation of increasing “must eventually” statements by Φ−1: if after suf-
ficient advance, the state of the abstract computation must eventually satisfy some invariant,
then after sufficient advance, the state of the concrete computation that implements it will sat-
isfy it (more precisely, at some point, any observable concrete state reachable from that point
will be mapped by Φ to an abstract state that satisfies the predicate).

Bounded Liveness

In Bounded Liveness, we depend on an additional notion of length for computations, and require
that any long enough concrete computation goes past an abstract computation of at least some
minimum length.
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For each computation, length is function from arrows to non-negative real number. The
function is additive (or sometimes subadditive), which means that the length of the composition
of two arrows is equal to (respectively no greater than) the sum of the lengths of individual
arrows. Real-time liveness is then the following property:

a a′′

c′′

c c′

A>la

Φ

C>lc

Φ

In other words, that there is an an abstract length la and a concrete length lc such that
if f : c −→ c′ is a concrete arrow of length no less than lc, then it can be decomposed into
f = g ◦ h where h is an observable arrow the meaning of which has length no less than la.
(NB: in the subadditive case, we have to modify the sentence above so that la is universally
quantified rather than existentially quantified.)

Bounded liveness is composable, given matching notions of length. Bounded liveness implies
liveness where advancing corresponds to an arrow having strictly positive length.

Strong Liveness

Strong Liveness is a variant of liveness whereby an infinite sequence of atomic concrete transi-
tions actually contains an observable arrow the meaning of which is advancing.

Strong Liveness assumes that the concrete computation’s advancing arrows are generated by
a set of atomic arrows, a subset of C noted C1. The corresponding diagram is then as follows:

a a′

c c1 c2 cm cn

A+

C1

Φ

C1

Φ

Strong Liveness is a useful property to have when C is a sequential (single threaded) com-
putation, where you prove that the implementation will spontaneously reach observable “safe
points” at which e.g. garbage collection may happen.

Strong Liveness is a composable property. On the other hand, Strong Liveness will not
usually be preserved when considering the product of two computations (i.e. running two or
more computations in parallel), whereas Liveness will. Strong Liveness will be preserved by
parallelism if there are no unobservable intermediate states, or if all concrete transitions are
precisely timed and synchronized between the parallel implementations (e.g. in a synchronous
digital circuit, with a clock).

Bounded Strong Liveness

Bounded Strong Liveness is a combination of Strong Liveness and Bounded Liveness, whereby
a finite sequence of atomic concrete transitions of total length at least lc contains an observable
arrow the meaning of which has length at least la.
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a a′

c c1 c2 cm cn

A>la

C>lc

C1

Φ

C1

Φ

Bounded Strong Liveness assumes that the concrete computation’s arrows are finitely gen-
erated by a set of atomic arrows.

Bounded Strong Liveness is a composable property and trivially implies Strong Liveness.

(Bounded) Strong Step Preservation

Strong Step Preservation is a variant of Strong Liveness assuming that we have notions of
“atomic” computations for A as well as for C, and requiring that the arrow from a to a′ be
atomic (in A1 rather than merely A+). This is useful for straightforward implementations of
“virtual machines”. Strong Step Preservation is a composable property and trivially implies
Strong Liveness.

Similarly, Bounded Strong Step Preservation will offer the same guarantee with a static time
bound. Bounded Strong Step Preservation is a composable property and trivially implies Strong
Step Preservation and Bounded Strong Liveness.

3.2.4 Co-Liveness and its variants

Yet another family of properties

Liveness and its variants provided guarantees that the abstract computation is advancing when
the concrete computation is advancing; co-liveness provides guarantees that the abstract compu-
tation terminates when the concrete computation terminates. Co-liveness complements liveness:
liveness says that concrete computations are relevant when they keep advancing; co-liveness says
that concrete computations are relevant when they stop advancing.

Co-Liveness

We’ll call Co-Liveness the property according to which if a concrete evaluation terminates, then
it is observable, and its meaning also terminates in the abstract computation.

Here, terminates means that there are no advancing arrows starting from where the eval-
uation stops. A concrete evaluation here is any concrete arrow starting from an observable
node.

Interestingly, our formalism so far does not allow for a nice of insightful diagram for co-
liveness as defined above. However, the (equivalent) contraposition of co-liveness could almost
be a simple diagram: it says that if there is an advancing abstract arrow from the meaning
of a concrete node, then an advancing concrete arrow starting from that node must either
have advancing arrows that continue it, or it must be observable. If we devised some way of
representing negation, or at least negation of a simple existential, or disjunction, or higher-order
diagrams, we could represent the property and/or its contraposition. But we will leave devising
such a graphical representations as an exercise for the reader. Instead, we will find variants of
co-liveness that do possess simple yet interesting diagrams in our formalism.
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Relevance

Relevance is the notion that unless an abstract state is terminal, any concrete transition from
a state implementing it will make progress “toward” some abstract transition. It corresponds
to the following diagram:

a′′′

a

a′′

c c′ c′′

A+

A+

C+

C

Φ

C

Φ

The diagram supposes that the abstract computation state a isn’t terminal, i.e. that ad-
vancing the abstract computation is possible from a, as posited by the otherwise unused arrow
from from a to a′′′, being in the advancing subset A+. It further supposes that some concrete
state c implementing a and some concrete transition f from c to c′ that “starts computing from
there”. It then requires that this transition be a prefix to a larger computation h = g ◦ f from
c to c′′, that is advancing in C, that is observable, and the meaning Φ(h) of which is advancing
in A from a to some node a′′. In informal terms, any concrete transition is relevant as part of
the implementation of a larger observable abstract transition.

Relevance implies co-liveness, assuming that C0 preserves observation and termination, i.e.
that if c is observable (respectively terminates) and there is an arrow from c to c′ in the non-
advancing subset C0 of C, then c′ is also observable (respectively terminates). Indeed, consider
the premises of the contraposition of co-liveness. If there is an advancing abstract arrow from
a to a′′′, and if c to c′ is advancing, then we use relevance to deduce c′′ and a′′; either the arrow
g from c′ to c′′ is advancing, and QED, or it’s in C0 and then c′ is observable like c′′, and also
QED.

The diagram for relevance is complex and ugly, yet it has the advantage of fitting in a single
diagram a sufficient condition for co-liveness, that still has an intuitive interpretation. Now, we
can simplify things a bit by separating the concerns in two: advance preservation for the case
where c′ = c and we require advancing (the diagram above removing c′), and observability for
the case c′ is arbitrary and we do not require advancing (the diagram above removing a′′′, the
curved arrow, and the remaining A+ restriction).

Advance Preservation

Advance Preservation is the property that if advancing is possible in A, then advancing is
possible by evaluating in C.

The diagram is as follows:
a′′

a

a′

c c′

A+

A+

C+

Φ
Φ

In other words, if advancing from a is possible in A, and c implements a, then advancing is
possible in C starting from c, in a way that is observably advancing in A.
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Note that in the above diagram, a′′ is a priori unrelated to a′ — that is, if the system
can advance, it will advance, but if there is any choice involved, it may be following a path
completely different from any particular path one might desire. If you want to force a′ to be
the same as a′′, then it’s completeness; however, completeness and advance preservation have
a very different computational content: with advance preservation, the evaluation is driven
by the concrete implementation, which is the whole point of an implementation indeed; by
contrast, with completeness, the evaluation is driven by the abstract implementation, which
as a regular evaluation strategy would defeat the purpose of implementation. However, if A is
(a) deterministic and sequential or at least (b) confluent, then indeed the difference between
completeness and advance preservation is minor, since in a way, there is no real choice left to
the implementation on where to take the computation.

Advance preservation as such isn’t composable, because if an implementation of A with C
and an implementation of C with D have it, then you can advance in C thanks to the implemen-
tation in D, but that isn’t enough to guarantee an advance in A. Now, if you consider the subset
of observable states to be part of the invariant to preserve, then A,O-advance preservation is
composable with O,O′-advance preservation, etc.

3.2.5 Observability

Rename to Safety, in light of it matching the Game-Theoretic Safety of blockchain applications?
See AGEFp properties in Computation Tree Logic (CTL)

A last family of properties

Observability and its variants constitute a last family of properties in this series, but not the
least. Observability guarantees that some observable abstract meaning can always be extracted
from an intermediate concrete computation state.

We saw above that, combined with advance preservation, it implies relevance that implies
co-liveness. But it is a much more general property with many important applications, from
garbage collection to process migration.

We are not aware of any general variant of this property having been studied in the past,
and believe we discovered its importance in our 1999 article “Formalizing the Notion of Imple-
mentation, as Illustrated with Concurrent Garbage Collection” [22] (unpublished), where we
originally dubiously dubbed it “soundness”— and called “safety” what we now call soundness,
after Lamport [16]). Actually, this property of “observability” corresponds closely to a “safety”
in multiplayer games where a player (in this case, the implementation) wants to be able to
reach a “safe” point (in this case, one that is observable) regardless of what the other players
do (thus, without depending on inputs from users and other peripherals).

However, a specific variant of this property was famously discovered by the MIT hackers who
developed ITS in the 1960s [7], and dubbed it “PCLSRing” (pee-cee-luser-ing); this discovery
was described by Alan Bawden in his 1989 report [3]: a process could stop another process and
observe its state, and the observed process would never be in the middle of a system call; any
ongoing system call would be either completed, or restarted, or interrupted in such a way that
it could be resumed from state purely in userland (e.g. with registers pointing to the end of a
partially read or written buffer before restart of the system call). The metaphor used by ITS
hackers was that a process could never be caught ”with its pants down”.

Observability

Observability is the property that given an intermediate concrete computation state c′, an
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observable computation state c′′ can be extracted by applying a non-advancing transition. The
diagram is as follows:

a a′′

c c′ c′′

A

C

Φ

Cs

Φ

That is, if a concrete computation starting from a stable state c has reached an intermediate
state c′, then it must be possible to stabilize the computation from c′ to a further observable
state c′′ by computing in C without advancing. This diagram is somewhat analogous to that of
Weak Completeness (see subsubsection 3.2.2), with abstract and concrete switched (however,
mind that the direction of functoriality of Φ is not switched, which limits the analogy).

Note however that the notion of advancing used with Observability is often different from
the notion of advancing used in other contexts (e.g. as used for Liveness or Co-Liveness): often,
when considering Liveness, a wide view of state and I/O is considered, where any change to
any aspect of the computation is considered as advancing; by contrast, often, when considering
Observability, a more narrow view of state and I/O is considered, where only input (or syn-
chronous output) is typically excluded from C0, and any kind of change that involves no input
and has low enough latency is included. Indeed, a typical way to implement Observability is
for an interrupted computation to be resumed and allowed to run and otherwise make some
progress until it reaches the next “safe point”. For all these reasons, we will call Cs the subset
of “safe arrows”, by contrast with the regular subset C0 of non-advancing arrows for some reg-
ular notion of “advancing”. Therefore, when using Observability in other contexts, the deduced
arrow must be considered as being an arbitrary arrow in Cs, rather than an arrow in C0 with
respect to advancing in that context.

In other words, the concrete computation mustn’t have meaningless transitions into the per-
manently unobservable; it mustn’t spontaneously and unrecoverably go wild or enter a deadlock;
it mustn’t require the external world to do special magic I/O so as to allow it to be observable
again. Instead, starting from an observable state, it must always keep the possibility of evolving
into an observable state, of “stabilizing”, in a way that doesn’t require the special knowledge by
the external world.

Observability by itself is not a composable property: given an observable implementations
Φ−1 of program P with abstract computation A, and Ψ−1 of A with concrete computation C,
we can from an interrupted concrete state c′ extract a stable abstract state a′′, and from there
an abstract program state p′′′ — but at that point, we haven’t identified a concrete state c′′′

that has p′′′ as image, and so we do not satisfy the condition for an observable implementation
of P with C:

p p′′′

a a′′ a′′′

c c′ c′′

P

A

Φ

As

Φ

C

Ψ

Cs

Ψ

Now, if the notions of advancing for A and C are such that Ψ induces an implementation of
As with Cs that is complete (see above subsection 3.2.2), then we can compose the observability
to get a′′′ and p′′′ as previously, and use completeness to deduce a c′′′ from a′′′, thus fulfilling
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the requirements. Given suitable subsets As of A and Cs of C, the combination of observability
and completeness is therefore composable:

p p′′′

a a′′ a′′′

c c′ c′′ c′′′

P

A

Φ

As

Φ

C

Ψ

Cs Cs

Ψ
Ψ

Note however that most programming languages do not provide a standard interface to
declare safe points and safe arrows, and let users provide observability for the languages (whether
domain-specific or general purpose) that they define on top of their existing platform. Thus,
even though modern programming language implementations often go to great length to provide
some notion of observability internally this notion cannot be exposed in a usable way to the
end-user who will be using a program written on top of the platform.

Observability for correct programs

Observability for correct programs is a weaker variant, whereby the concrete system is allowed
to go wild for abstract programs that do not satisfy some correctness property. Usually, this is
formalized by just considering an implementation of the proper subcomputation of A.

Unhappily, some programming languages (such as the widely used C programming language
[citation needed]) make it easy to inadvertently stumble upon “undefined behavior” [citation needed],
at which point typical implementations will go wrong, and it is not possible to recover a mean-
ingful abstract observable state anymore from the computation — what more, implementations
of the same languages may make it hard to distinguish whether you’re still observing correct
computations, or are being fed garbage due to previous undefined behavior. When such a lan-
guage, directly or indirectly, Observability and other useful implementation properties are only
guaranteed if not otherwise triggering one of these cases of “undefined behavior”.

Bounded Observability

Bounded Observability is a stronger variant of Observability, whereby we assume we have a
notion of “length” of transition paths between two states, and we require that the exhibited
transition path from c′ to c′′ be of length less than some maximum admissible response time, or
more generally that it fits within some maximum pre-allocated amount of resources. Bounded
observability is important for real-time applications, particularly in presence of global synchro-
nization of concurrent threads. [citation needed]

Strong Observability

Strong Observability is a variant whereby up to we can associate to every state in C a unique
“closest” state in A. Essentially, Φ can be extended into a total function such that every state
in C is observable, e.g. by always forcing the evaluation to continue to the next “safe point”.

Strong Observability is a simple and cheap property to require from a sequential (single-
threaded) implementation of a deterministic programming language. But Strong Observability
can be quite complex and expensive to achieve in a non-deterministic, concurrent and distributed
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system, where the branching structure of evaluation choices may be richer in the concrete com-
putation than in the observable subset of the abstract computation it implements — which itself
may be poorer than the branching structure of choices in the complete abstract computation,
but in different ways. Some concrete states may then represent a choice between many valid
abstract states, in a way that does not reflect a specific state in the abstract computation.

More formally, we associate to each reachable state c in C the subset of abstract states
in A that may be observed in future executions in Cs starting from c, or equivalence classes
up to reduction in As. We will call this set the set of interpretations of c, and we will call
its elements interpretations of c. Observability states that for any c that is reachable from O,
this set is non-empty. Strong observability is a stronger variation that requires that the set of
interpretations of a reachable concrete state should not only be non-empty, but to have only
one element up to equivalence. That is, for every reachable concrete state c′, we can precisely
identify an abstract state a′ that corresponds to c′, even if c′ is not observable yet. It then
becomes trivial to extend φ from O to the whole subset of elements in C reachable from O.

3.2.6 Contrasting Observability with Other Properties

Some previous properties, like soundness and completeness, only involved observable elements
of the concrete system: they only concerned relative properties of O and A, notwithstanding any
relationship between C and O; they were property of φ alone, independently of j. By contrast,
liveness and observability really involve relative properties of O and C, notwithstanding any
relationship between O and A; they were property of j alone, independently of φ.

Also note the temporal dissymmetry of Observability, Liveness or Completeness, whereas e.g.
Soundness and Fullness were symmetric with respect to the direction of arrows. The notion
of implementation is meant to formalize efficient (or at least adequate) means of executing
abstract computations with more concrete computations. Observability is a property that is
definitely oriented toward proper evaluation of computations, notwithstanding other properties
of computations. If we wanted to capture the pure and perfect semantics of the abstract
computation, we would just stick to the pristine source in the original language, or go“upwards”
toward more abstract concepts; going “downwards” toward more concrete implementations is
done for execution purpose only or mainly.

All in all, Observability is an essential notion for implementations, that involves the very
essence of what to implement is about. It was the main contribution of our 1999 article[22].

3.3 Combining Implementations

Implementations being the arrows of a Category (see 2.1.2), they themselves constitute a Cat-
egory the arrows of which are natural transformations. All the usual algebraic operations then
also apply to the Category of Implementations, just as they did to the Category of Computa-
tions (see 2.3). Once again, we will focus on just a few operations that are particularly common
or remarkable when applied to Implementations. Examining ways that implementations can be
combined is most useful to build more complex implementations from simpler ones, or conversely
to analyze a complex implementation into simpler parts.

3.3.1 Composition

Implementation Composition

A most common way to combine implementations is to compose them, and a most common way
to analyze them is to decompose them. In our diagrams, this corresponds to introducing more
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implementations along the vertical axis. We saw in the previous chapter that Computations
constitute a Category where Interpretations are morphisms (or, reversing the arrows, Implemen-
tations). The full diagram for the composition of Interpretations (and thus, Implementations)
is as follows:

A

OAM

OAC M

OMC

C

jφ

φ

jξ

ξ

jo

ψo

Φ

jψ

ψ

Ξ

Ψ

Formally, if Φ−1 = jφ◦φ
−1 is an implementation of an abstract computation A with a middle

computation M through observable subset OAM , and Ψ−1 = jψ ◦ ψ−1 is an implementation of
middle computation M with a concrete computation C through observable subset OMC , then

Ξ−1 = Ψ−1 ◦Φ−1 = (Φ ◦Ψ)
−1

is an implementation of A with C through an observable subset
OAC , as constructed below.

OAC is the full subcategory ofOMC such that node-wiseOAC = ψ−1(jφ(O
A
M )); jo is the canonical

embedding of OAC into OMC (itself a full category of C); and ψo = jφ
−1 ◦ ψ ◦ jo. If we define

jξ = jψ◦jo and ξ = φ◦ψo then Ξ−1 = jξ◦ξ
−1 is the implementation sought after. Checking that

this construction behaves correctly on arrows (soundness) is left as an exercise to the reader,
as the formal details of such demonstrations are not essential to this thesis; however, note that
the fullness of jφ is essential in establishing that the above construction for ξ actually leads to
a functor.

Of course, in practice, we will use partial functions, elide the details about total functions
involving an observable subcategory, and only write the simpler:

A

M

C

Φ

Ξ

Ψ

Now, most of the properties and conjunction of properties we previously discussed are com-
posable: if Φ−1 is a implementation of A with M that has all properties in a conjunction, and
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Ψ−1 is a implementation ofM with C that has the same properties, then Φ−1◦Ψ−1 is an imple-
mentation of A with C that also has those properties. Therefore, Computations, equipped with
additional features like advancing or length, where appropriate, also constitute a (somewhat
different) Category, where the morphisms are Implementations having those properties. As for
soundness, it’s a property we require of all Interpretations, so the Category of Computations
with sound interpretations is the same as the Category of Computations.

Decomposing Implementations

The above composition diagram is most often used with decomposition as an intent: the object
of ultimate interest is the implementation Ξ−1 of some abstract computation A with some con-
crete computation C, where A and C are given as well as constraints on Ξ. When synthesizing
Ξ, the intermediate entitiesM , Φ, Ψ are largely variable elements that the programmer chooses
at his convenience, to simplify the problem of achieving his goal. When analyzing Ξ, establish-
ing properties of the intermediate entities M , Φ, Ψ is just intermediate goals in establishing
those properties for Ξ.

This decomposition can be repeated many times. Indeed, when compiling a programming
language, the compiler is often broken down in multiple passes; passes, or pairs of analysis
and transformation passes, can often be thought of as implementations (in our sense), where
at each slice, the computation (considered up to non-advancing rewrites) is being implemented
with a somewhat lower-level computation. These passes together constitute a tower of imple-
mentions the composition of which implements the abstract program with the concrete ma-
chine. “Nanopass” compilers[citation needed] emphasize the process by decomposing the same
overall semantics in more passes; adding more passes allows to zoom in on specific details of
the implementation, making it easier to write individiual passes and to reason about them.

Given a set of composable properties, and a decomposition of an implementation as a com-
position of simpler implementations that we’ll call passes, we can analyze each pass and prove
that is has each property, then deduce that the overall implementation has all those properties.
If the passes and the properties are each simple enough, the reasoning should be trivial for most
pairs of pass and property — only in cases where the pass does something subtle with one aspect
of the computation will an according property require non-trivial analysis, at which point the
decomposition will hopefully keep that analysis relatively simple. Often, it may happen that
all passes but one satisfy a property (for instance, completeness or totality may fail at a pass
mapping object graphs to memory, due to out-of-memory error); but then, at least failures to
satisfy the property has been narrowed down to one cause with a well-identified failure mode,
and if that particular failure isn’t observed, users can be confident that the property could be
relied upon so far.

Composing up: Writing Programs

Now, there is a completely different way of looking at the very same diagram: instead of
starting from an existing abstract computation A and concrete computation C and adding
an intermediate computation M in the middle, we can start from an programmable abstract
computation A (i.e. language, or configurable application), and a concrete computation C and
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add a program P on top:
P

A

C

Φ

Ξ

Ψ

With this change in point of view, A and C are given as well as the implementation Ψ−1 of
A with C, and we are exploring the programs implemented on top of the programming language
or programmable system A. Then it becomes apparent that the interesting properties that we
are interested to have in implementations require not just Ψ to possess them, but also Φ, which
in turn requires A as a programming language to expose suitable interfaces for the programmer
to implement and provide said properties.

Now, most programming languages lack any interface to the useful properties that an im-
plementation may have. Providing such an interface is the topic of the next chapter. Then,
casual users, rather than advanced compiler writers, can also ensure that their program P has
an implementation Ξ−1 with the properties they desire. Otherwise, to achieve the same effect
they’ll have to use ugly design patterns to implement on top of A a virtual machine V that
provides the hard way all the properties they wanted from Ψ that were not exposed, then use
them to implement P awkwardly on top of that.

Composing down: Virtualizing

By symmetry, a third way of looking at the diagram, of course, is as be adding an arrow down,
where A and C are known, and you add a virtualization layer V below C:

A

C

V

Φ

Ξ

Ψ

In this final point of view, some existing program has been implemented on some concrete
machine C, but that machine is virtualized, and itself implemented on top of an underlying
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virtualization layer V . Note, that this point of view may apply whether or not C was explic-
itly called a “virtual machine” or not before this virtualization happened: there can be direct
hardware implementations of what was previously considered a“virtual machine”bytecode, and
there can be software implementations of what was previously meant as hardware instructions,
with all kinds of mixed strategy in between. And of course, V can itself be implemented “di-
rectly” in hardware, or virtualized and implemented in any kind of way whatsoever — and so
on, ad libitum.

When virtualizing, the virtualization layer takes care of implementing the user-visible inputs
and outputs. Additional outputs may be added, for instance to logging usage of some resources,
or to track modifications to some variables being watched while debugging. The evaluation may
be interrupted when some condition is detected, whether again for debugging, or for lack of
resources, or for security reasons. Inputs may be added to control this additional output only.
But if the behavior of the program is modified, then what you have is not an implementation
of the program, it’s an implementation of a different, modified program, or of a larger program
that includes (parts of) the initial program (see below) — which is also an interesting and
related thing, but a different thing. An implementation as such may not modify the higher-
level behavior.

If the upper layers of the program implementation, i.e. Φ, do not offer some useful property,
then the overall implementation, i.e. Ξ, can’t provide it. But that doesn’t mean that the lower
layers, i.e. Ψ, can’t or shouldn’t provide such a useful property: it might still be relied upon
by users to provide some weaker overall property, and it might still be useful to have these
properties, even at the level of abstraction of C only rather than A. For instance, Φ might
not be total nor complete, but you might still want Ψ to be total or complete, to not add new
unwanted and unhandled failure modes. Or, Φ might not have real-time liveness in general, but
fragments of it may have it, and having Ψ provide it may then be essential to preserving the
meaning of these fragments. Moreover, Observability may be used to enable process migration
or replication at a low-level, even where these features cannot be provided at a higher-level of
abstraction.

3.3.2 Control

There are many ways of composing or decomposing implementations that in our diagrams do not
add more implementations on the vertical axis, but combine or modify what happens along the
horizontal axis, i.e. defining the semantics of the computation. We unhappily do not have very
good diagrams for these operations, but happily building and implementing computations with
interesting and/or appropriate semantics is already a well-known topic, that of programming
languages. We will thus focus on those ways of composing and decomposing implementations
that do not involve building new semantics, but preserving existing semantics, yet in useful and
relevant ways.

Inclusion

A most obvious way for the semantics of an implementation Φ−1 to be preserved when one
instead considers an implementation Φ′−1

is when Φ′−1
is included in Φ−1. If Φ−1 is an

implementation of A with C and Φ′−1
is an implementation of A′ with C ′, then A′ is included

in A, C ′ is included in C, and Φ′ is included in Φ.
The restricted scope of C ′ as compared to C can be used to model many things: the respect

of some kind of local invariant or scope; use in normal (or correct) situations as opposed
to exceptional (or erroneous) situations, or vice versa; some context that doesn’t change often
during execution; the temporary, expected, desired, or necessary satisfaction of some constraint;
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etc. C may contain additional nodes and arrows as compared to C ′: the local invariant may be
violated and the scope exited; the situation may change from normal to exceptional and vice
versa; the context may eventually change; the constraint may be broken; etc. The computation
C may thus be much larger than C ′.

A particular use of inclusion is to allow “administrative” rewrites between equivalent nodes,
that do not usually happen during normal execution, but may be forced from an outside con-
troller (see 8.3) e.g. to achieve completeness. Thus for instance, in a non-deterministic program,
the implementation left to run without intervention would follow some heuristic for choosing
the execution path, and that would be C ′, but it actually also allows some external agents to
override this heuristic or force different choice.

Many of the desirable properties listed in the previous section need only be proven for
either one of Φ−1 or Φ′−1

(depending on the property) and be easily deduced for the other.
On the other hand, the two implementations will usually have been distinguished precisely
because one will have properties that the other has not: For instance, it may be that the
“same” implementation has real-time behavior during normal use as modeled by C ′ having real-
time liveness but not in the general case exceptional situations may arise (e.g. packet drop,
disconnection, power loss, etc.) such that C as a whole does not have that property.

Selection

Selection is particular case of multiple inclusion, whereby the sum of a family of implementations
(Φx

−1)x∈X is included into a common implementation Φ−1 of A with C. (Note that, in the
terms of Category Theory, this sum, being constrained, is a pushout, rather than a co-product.)
Additional arrows may then allow the computation to select between these sub-implementations.
If these arrows depend on external input, the selection is externally controlled by an outside
process; if the arrows do not depend on external input, the selection is internally controlled by
a algorithm inside the implementation itself.

This models the fact that at every moment that the computation A is being implemented by
one of the sub-implementations Φx

−1 in the sum, that sub-implementation has been selected
to implement the current state of computation. But, with additional arrows, at some times
the computation may switch to another implementation Φy

−1 (and, with additional nodes, if
the inclusion is not nodewise surjective, the computation may switch to parts not included
in the sum). Such change in the current sub-implementation may model situations in which
the previous choice of sub-implementation is replaced by another that is better adapted to a
modified situation, one that is better optimized, or one that somehow corresponds to a temporal
decomposition of an overall computation in several local phases, or one that reflects a change
in the execution environment.

In such a setting, we are usually interested in establishing properties of the complete imple-
mentation Φ−1, by studying the partial implementations Φx

−1, and the additional transition
arrows.

Selection is a very useful tool, that allows to focus on essential issues at hand when syn-
thetizing or analyzing the local behavior of an implementation. One notable use of it is to
model migration, as described below in chapter 6.

Stopping

Given an implementation Φ−1, the implementation Φstopped
−1 is defined as Φstopped having the

same set of observable nodes as Φ, but having no non-trivial arrows (i.e. no arrows besides the
identity arrows). There is trivially a natural transformation from Φstopped to Φ and there is a
forgetful functor that to Φ−1 associates the stopped implementation Φstopped

−1. Once again,
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the direction that preserves structure is contravariant to the intent-following notation: from C

to A, from Φstopped to Φ. Note that Φstopped has no liveness property at all — and that’s the
whole point: from an evaluation point of view, it’s stopped.

A stoppable implementation is a selection (as in 3.3.2 above) of an implementation and its
stopped implementation, where the co-product is extended with transition arrows labelled by
two distinct actions“stop”and“resume”between homologous nodes. These transition arrows are
labelled so an external computation (scheduler or other metaprogram) can thus stop and resume
the (concrete) computation. There is an obvious functor from implementation to stoppable
implementation.

Timesharing

Stoppable implementations can notably model timesharing, by which an operating system im-
plements an arbitrary number of concurrent processes on a monoprocessor or a multiprocessor
with a fixed number of processors: given for each process an implementation of the process on
the machine, consider the constrained product of the corresponding stoppable implementations
(i.e. in Category Theory, a pullback, where the constraint is that inter-process communication
and other interactions are properly identified); then add the restriction that among the imple-
mentations in the product, only one may be running at the same time per processor available,
including the scheduler itself, a privileged additional computation in the product.

In cooperative multiprocessing, scheduler computations may only happen when the compu-
tations execute some special yield actions; in a preemptive multiprocessing, scheduler compu-
tations may happen at any time via interrupt transitions.

Runtime Metaprogramming

Beyond timesharing, stopped implementations can also model debugging, or any kind of control
of an implementation by some kind of runtime metaprogram: a scheduler, a debugging monitor,
a container (such as a hypervisor), a kernel, etc.

The runtime metaprogram can stop the computation, examine it, resume it, determine the
strategy according to which to resolve some non-deterministic choices, maybe make it go back
in time and follow different choices. It may also contain or use additional transitions, corre-
sponding to the computational content of observability, completeness, liveness, etc.: all of these
transformations trivially preserve the computation’s semantics. However, the metaprogram may
not modify the computation, otherwise it’s not a correct implementation of the computation
anymore — though it may be a correct implementation of some super-computation, if that is
what it may have been specified to preserve.

As with selection above, the metaprogram can be an external computation or can be part
of the computation itself: An external metaprogram would control its concurrent computa-
tions via input or output interactions triggering the stopping and resuming of each individual
computation’s stoppable implementation, and other transitions within, between or across imple-
mentations. An internal metaprogram would do as much, but the transitions would be internal
without involving externally observable input or output.

3.3.3 Concurrency

Observability as a Synchronization Primitive

In the paper in which we originally proposed the current formalization of implementation[22],
we explained how the computational interpretation of the observability property was as a syn-
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chronization primitive, and how it could be used to model essential phenomena in the imple-
mentation of concurrent and distributed systems. Here is a restatement of this approach.

Consider an abstract concurrent computation A made of several communicating parallel
subcomputations Ai. In categorical terms, A is a pullback of the product Πi∈IAi, where various
states or interactions have been identified in the way natural for A. We want a “modular”
implementation of A, based on combining separate implementations Φi

−1 of each Ai with a
concrete computation Ci. However, for parallelism to mean anything at all, we want to run
the concrete computations Ci in parallel on the given underlying processor architecture — in
other words, to use the implementation for running the computation, we can’t arbitrarily choose
which states or interactions we can identify between the Ci, and which pullback we get, we have
to use the pullback of the Ci where the identifications are implicit from the common algebra in
which they are written, as embodied by the computer architecture on which they are meant to
run.

Now, if the threads run independently, the odds that any one Ci will be in an observable
state at a given moment are low, and for any non trival number of factor computations, the
odds that all relevant factor computations Ci will be in an observable at the same time are
vanishingly small. This is not a problem as long as any interactions that are atomic between
the Ai are also atomic between Ci for the implicit way that the Ci are run on said underlying
architecture; then, the product Πi∈ICi implements A. But what if the interactions between the
subcomputations Ai are not directly expressible as a pullback in terms the underlying common
architecture in which the Ci are to run?

The solution is that we can run the independent fragments of Ci, those that don’t involve the
non-atomic “high-level” communication events, as separate threads, and have a special activity,
a kernel, implement the communication events. For these high-level communication events to
happen, all threads involved may have to respect all the suitable high-level invariants — in
other words, they must each be in an observable state. To get the relevant individual threads
in observable state, the kernel K will be able to stop and restart each individual thread (as
in 3.3.2 above); when a thread is stopped, the kernel can observe it, that is, synchronize it in
an observable state; and when all relevant threads are in observable state, then the kernel can
enact the communication, in a way that appears atomic to each of these threads.

Thus, in the general case, to implement a (parallel) product of computations, we need more
than the product of their implementations, but a product of their stoppable implementations
and a communication kernel. The set of state of the system will thus be a pullback not of
Πi∈ICi but of KΠi∈I(Ci + Ci,stopped).

Observability in Existing Concurrent Systems

Synchronizing to a safe point is a well-known issue faced by concurrent implementations of
computing systems, whether it’s for the sake of garbage collection, database transactions, snap-
shotting, process migration, code or data schema upgrade, non-local communication, precise
accounting, or any other global operation that depends on the high-level invariants of the sys-
tem being preserved. The software implementation of such synchronization to a safe point dates
back at least to the 1960s with ITS [7] and its “PCLSRing” [3]. When running any kind of user-
provided code, synchronizing to a safe point can also be a matter of security: if code meant to
run while safety invariants are satisfied is actually allowed to run when they are broken, it can
result in catastrophic behavior. See for instance how the recent attack on the ethereum DAO
cost tens of millions of dollars in damages. [citation needed]

Observability is a formal way to reason about this issue and to address it in a systematic
and modular fashion.
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Multiple Observability Properties

When only a subset of the components are involved in a particular abstract operation, only
these components must be coherently stopped in an observable state for the implementation of
the abstract operation to be possible. Several operations on disjoint subsets of components may
even be attempted in parallel. Hence, there are as many useful notions of partial observability
as there relevant sets of components to be synchronized.

What more, when there are several composed layers of implementations, or when there is
an inclusion or selection of implementations, then even for the same subset of components of
the same system, there may be many distinct observability properties, all of them relevant.

For each way to observe a same concrete system as the implementation of some more abstract
system, there corresponds a different notion of observability that may be used for synchroniza-
tion while implementing that more abstract system. For efficiency, the kernel may then be able
to use as weak an observability property as required by the considered abstract operation, but
no weaker.
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Part II

First-Class Implementations
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Chapter 4

From Semantics to Protocol

4.1 Computing with Categories

4.1.1 Intent

From our diagrams about the properties of implementations in general, we extract a runtime
protocol to interact with such implementations at runtime. This illustrates how theoretical
considerations can have direct practical applications. The extraction is type-directed, as per
the Curry-Howard isomorphism[citation needed]: the protocol is the computational content of the
properties we presented.

First, we formalize these properties in a dependently-typed system. We chose Agda as
our formalization language, because of its relative simplicity and the fact that thanks to its
type system having dependent types, it is simultaneously a programming language and a proof
verification environment. We could as well have used Coq or Idris.

Second, we can omit logical constraints, that in Agda are resolved at compiled time, and
approximate away type dependencies, that cannot be expressed in languages with less expressive
type systems. This yields types that can be used to specify the protocol functions in these
languages. Depending on the language, various approximations must be consistently used to
extract different variants of the protocol.

In this section, we will show how to can extract a runtime protocol from our formalization
of computations, yielding first-class computations. Then in the next section, we can apply
the same technique to extract a runtime protocol from the more elaborate formalization of
implementations, yielding first-class implementations.

4.1.2 Categories

A Category can be formalized as a record of the following items:

• A set Node of the nodes of the category.

• For every pair of nodes A and B, a (possibly empty) set A =⇒ B of arrows.

• For every node A, an identity arrow id A in A =⇒ A.

• A composition function ◦ that composes compatible arrows.

• Logical laws: id arrows being identity (left and right), and composition being associative.

69
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In the Agda library the definition for a Category could be as follows:

record Category (n a : Level) : Set (suc (n ⊔ a)) where

field

Node : Set n -- nodes, at level n

_=⇒_ : Rel Node a -- binary relations between nodes, at level a

id : ∀ {A} → (A =⇒ A)

_◦_ : ∀ {A B C} → (B =⇒ C) → (A =⇒ B) → (A =⇒ C)

...

Note how in Agda we had to explicitly deal with type hierarchies necessary to avoid the
Russel Paradox: n, a and (suc (n ⊔ a)) are manually managed type levels, so that a category
lives at a level strictly above that of both nodes and arrows. The underscores help declare infix
syntax, and the curly braces declare implicit arguments that can usually be omitted and inferred
from the context.

Also note that in the actual Agda library categories, the Node type is actually called
Obj (and its level o), to reprise the common mathematical terminology where nodes are called
objects, and arrows are called morphisms (or homomorphisms).

The Agda definition also includes logical laws, as additional parameter fields containing
proofs of the required properties:

identityl : ∀ {A B} (f : A =⇒ B) → (id ◦ f) ≡ f

identityr : ∀ {A B} (f : A =⇒ B) → (f ◦ id) ≡ f

assoc : ∀ {A B C D} {f : A =⇒ B} {g : B =⇒ C} {h : C =⇒ D} →

(h ◦ g) ◦ f ≡ h ◦ (g ◦ f)

4.1.3 Extraction

Erasing dependent types

From specifications, we can extract programs that embody their computational content, by
erasing proofs and types that are not relevant at runtime. While Coq has popularized automated
program extraction[citation needed] based on formal rules, we will manually and informally extract
an API from the previous specification of implementation properties.

Not to introduce an extraneous programming language, the target language of our informal
extraction will be a subset of Agda without dependent types, yet with type parameters. The
result should be easy to map to any sufficiently advanced programming language such as Haskell,
OCaml, Scala, Java, C++, etc. Well-known techniques could also further adapt the code to
languages with less advanced static type systems (by replacing every parametrized type with
one type or a finite enumeration of types), or to “dynamically typed” languages without any
non-trivial static type system (by erasing types altogether).

We leave it to the readers to adapt our protocol to the language of their choice: what matters
is that the computational content of the functions in our protocol will remain the same: one
function returns the domain of an arrow, another function advances a computation, etc. Thus,
our initial specification will have made it possible to identify a coherent set of functions that
can be used together to express things not previously possible.

Extracting Categories

Without dependent types, and when nodes represent values that can change at runtime within
a type Node, the type for arrows in a category cannot depend on the values of nodes. Therefore,
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for each category, there will be a type Arrow for all the arrows in the category. A category
representing a runtime computation would therefore be a record of just the following types and
functions:

record &Category : Set0 where

field

Node : Set0
Arrow : Set0
&id : Node → Arrow

&compose : Arrow → Arrow 9 Arrow

Note that in this text we name our extracted functions with an ampersand & prefix to clearly
distinguish them from the functions in our original specification on an obvious syntactic basis.
The extraction in some other language may eschew that prefix (that might not be syntactically
valid in that language), since there would be no clash with identifiers in this specification; on
the other hand, it might also rename functions to avoid name clashes with standard library
functions or reserved keywords. We will usually omit the ampersand prefix for types, that will
have different names and shapes.

Also note how &compose returns an Arrow, but is a partial function, denoted by 9: the
result is only guaranteed to make sense when the right arrow’s codomain is the left arrow’s
domain, which cannot be enforced by the type system when simplifying away dependent types.
The way to express that with dependent types is through type constraints between arguments,
and extra arguments as witnesses of additional logical constraints. In the absence of dependent
types, several solutions may apply. We could use a total function; but then &compose would
have to return some non-sensical result when that’s not the case. We could have made it return
the option type Maybe Arrow and use the value nothing when the arrows fail to compose;
then we have to constantly “lift” functions that process such results to handle that case. This
lifting could be implicit in a language where or where the Arrow type implicitly (or explicitly)
includes a null case. Finally, in a language where functions can have side-effects such as throwing
exceptions, these might have been used instead, which we could denote using 99K.

Runtime checking

Since without dependent types the logical correctness of programs cannot usually be proven at
compile-time, it would befall on the programmers to that they only do operations on compatible
nodes and arrows. One solution would be to first write their program in a dependently-typed
language that ensures safety, then extract it; another would be for the programmers to check
at runtime that nodes and arrows operated on are indeed compatible. The check could be done
either by those who implement the categories (which is safer), or by those who use it (which
is more efficient, but unforgiving of mistakes they might make). To check whether two arrows
can be composed, the domain and codomain may be determined at runtime, using the below
functions:

&domain : Arrow → Node

&codomain : Arrow → Node

The two functions could have been defined as follows in the original dependently-typed
protocol, rather than be required function parameters to be provided as part of the category
implementation:

domain : ∀ {A B} → (A =⇒ B) → Node

domain = λ {A B} f → A
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codomain : ∀ {A B} → (A =⇒ B) → Node

codomain = λ {A B} f → B

Furthermore, if, lacking sufficient type abstraction, the types Node and Arrow have to be
shared across categories, then functions that use nodes and arrows may have to check that they
are in the same category before they may be somehow used together. This can be done using
the following functions as part of the &Category signature whereby a category can recognize
which nodes are part of it1:

&contains-node : Node → Bool

&contains-arrow : Arrow → Bool

Another (non-exclusive) approach could be that nodes and arrows know which (principal)
category they are part of, which however precludes these nodes and arrows being part of more
than one:

&node-category : Node → &Category

&arrow-category : Arrow → &Category

4.1.4 First-Class Computations

Computations

Now, when we consider categories as operational semantics, then a node (“object” in categorical
terms) is a state of a computation, and an arrow (“morphism”or“homomorphism” in categorical
terms) is a labelled state transition.

As a first-class object, a node may therefore encode the captured state of a light-weight
thread in some high-level programming language or its virtual machine: the registers, stack
and heap or a low-level program, the continuation of a scheme program (and also its store if
it’s stateful), the S, E, C, D registers of a SECD machine, etc. It may also encode the frozen
state of a separate operating system process being debugged, or otherwise attached e.g. with
the Unix ptrace(2) system call.

An arrow is then a first-class frozen representation of a change that may happen, that takes
one from one state to another. For instance, it would record that some registers and memory
addresses were modified from one value to another, and that some I/O operations happened.
You could deduce the arrow from a complete trace of every change that happened between
those two states, by summarizing those changes that matter to the computation at hand.

In an analogy to physics, one can see a node as a point in phase space that summarizes
(what can be observed of) the state of the system. It is a tiny point in a huge space, that grows
exponentially with the informational content in each node. An arrow is then a path between
two points along a trajectory of allowed system evolution; or rather, it is an equivalence class
of such paths that are indistinguishable to the observer. Observation can equate many nodes,
and its uncertainty can introduce non-determinism; or the non-determinism can equivalently be
considered as part of the system. If there was observable input of matter, energy or information
from outside the system or output of same to outside the system, then it will be recorded as
part of the arrow; similarly if there were turns around a topological singularity or whatever
other observable physical phenomenon.

What distinguishes a computation from a random category, though, is that somehow these
categories are the operational semantics of some computations, that can be actually run.

1These two functions satisfy the following identity:
∀ {node} → &contains-node node ≡ &contains-arrow (&id node)
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Running Computations

The Category protocol so far allows one to express first-class representations of computation
states and of transitions between pairs of such states. Now the point of having a computation
is for it to do the computing for you, not for you to tell it what transition to examine and effect
and when. Therefore, to run the computation, one must have some mechanism of starting from
the current state and having a computer walk as far as it can through these transitions. To
embody a first-class computation, a category must therefore possess a function run that given
a starting node A, “runs” the first-class computation for some time, and returns (the dependent
product of a node B and) an arrow A =⇒ B.

run : (A : Node) 99K ∃ (λ {B : Node} → A =⇒ B)

The signature for an extracted function in a non-dependent setting would be as follows,
where the node B can be omitted since it can be deduced from the arrow as its domain:

&run : Node 99K Arrow

Now, notice the above use of a dashed arrow. Running the computation may take an
arbitrary amount of time; it may be non-deterministic; it may not terminate; it may involve
communication with other computations; it may or may not have other side-effects. For all
these reasons, it cannot be a simple function, but must be some effectful computation. The
arrow 99K therefore represents native functions with general side-effects in the meta-language
that manipulates the first-class computation. It is therefore an arrow at the meta-level (more
precisely the ante-stage). Implicit in the notion of first-class computation is therefore the notion
of evaluative reflection, which we’ll explore in the next section (4.1.5). In Haskell, for instance,
x 99K y could be extracted as the Kleisli arrows x -> m y for some suitable monad m, typically
the IO monad. [citation needed] In a meta-language with unrestricted side-effects, such as an ML
dialect, it would be that meta-language’s regular function type x -> y.

Notice also how the signature for run says nothing about when that function stops. It may
return immediately without effecting any transition and without advancing in any way. It may
never return, vainly trying to complete a computation that loops forever and never stops. It
may return an intermediate step, stopping after a while for whatever reason. Or it may run
the computation to completion until it returns with a result. While the informal contract of
the function may be to run until either the program completes or some meaningful interruption
happens, the current type does not say anything; a model of what advancing, completing or
interrupting means is necessary to improve on that type.

Advancing Protocol

We can express progress in running the computation with some notion of advancing, as per
section 3.2.3. We can formalize this notion with functions that can decide whether an arrow is
advancing or non-advancing, and whether a node is done or not-done, where it is done if and
only if there is no advancing arrow with it as domain:

advancing? : ∀ {A B} (A =⇒ B) → Bool

done? : (A : Node) → Bool

For reasoning, we can define the following predicates:

advancing : ∀ {A B} (A =⇒ B) → Set a

advancing f = (advancing? f ≡ true)
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not-advancing : ∀ {A B} (A =⇒ B) → Set a

not-advancing f = (advancing? f ≡ false)

done : ∀ {A B} (A =⇒ B) → Set a

done f = (done? f ≡ true)

not-done : ∀ {A B} (A =⇒ B) → Set a

not-done f = (done? f ≡ true)

The following laws hold for advancing:

advancing-absorbsl : ∀ {A B} {f : A =⇒ B} advancing f

{C} {g : C =⇒ A} → advancing (f ◦ g)

advancing-absorbsr : ∀ {A B} {f : A =⇒ B} advancing f

{C} {g : B =⇒ C} → advancing (g ◦ f)

identity-not-advancing : ∀ {A} → ¬ (advancing (id A))

And the following law relates advancing and done:

done-iff-cannot-advance :

∀ {A} (done A) ↔ ∀ {B} (ar : A =⇒ B) → (not-advancing ar)

Then we can specify the functions step and advance as follows, where step (wherever
it is defined) deterministically advances one step, whereas advance (wherever provided) non-
deterministically advances some unspecified amount, depending on the particulars of the im-
plementation, on interruptions, etc., which side-effects are represented using the meta-language
arrow 99K:

step : (A : Node) →

∃2 (λ {B : Node} (ar : A =⇒ B) → (done A) ⊎ (advancing ar))

advance : (A : Node) 99K

∃2 (λ {B : Node} (ar : A =⇒ B) → (done A) ⊎ (advancing ar))

The simplified API function in a non-dependent setting would make advancing and done
runtime predicates returning a boolean, and would omit B and the correctness proofs:

&advancing? : Arrow → Bool

&done? : Node → Bool

&step : Node → Arrow

&advance : Node 99K Arrow

Evaluation

Given the notions of advancing and done above, we can define a function with the following
type, that will keep running and advancing the computation until it completes and reaches a
state where it is done:

eval : (A : Node) 99K ∃2 (λ {B : Node} (ar : A =⇒ B) → done B)

The extracted API function would simply have the following type:

&eval : Node 99K Arrow

Note how &run, &advance and &eval have the same type: without dependent types, the
three cannot be distinguished at compile-time merely from their signature; what distinguishes
them is the logical guarantees about the result they return; more variants could be produced,
for instance, to take into account time and other resources.
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4.1.5 Evaluative Reflection

Performing vs Simulating

In the above protocol to “run” a computation, we kept manipulating and returning first-class
nodes and arrows, and didn’t actually run the code and have it do its side-effects. In some
way, it was a simulation, not the “real thing”. Of course, if the computation involves no
actual side-effect, and if the simulation is efficient enough, there is no difference. But if the
computation involves having actual effects on the world, such as sending messages to machines
and people outside the system, printing documents, controlling a robot, effecting monetary
transactions, or launching nuclear missiles, then clearly there is a difference between simulating
a computation based on a first-class representation and actually running the computation on
the actual computer system it’s supposed to run on.

Inherent in the notion of first-class computation, therefore, is the fact that these first-
class computations, as data items manipulated or reasoned about by some meta-system, can be
instantiated as code into actual computing system, that will run with actual side-effects. In other
words, first-class computations implicitly assume what we called Evaluative Reflection in section
??. Whatever program manipulates a first-class computation is an ante-computation, and these
first-class computation simulate computations that an actual computer will presumably perform
later, with actual side-effects, as a post-computation.

Formalizing Evaluative Reflection

When describing comptations, we use two kinds of computation arrows. First, the double-
arrow =⇒ denotes first-class computations seen as data recording potential changes and side-
effects; being data, it’s mostly inert by itself, and its meaning fairly independent of the meta-
system where the ante-computations take place. Second, the dashed-arrow 99K denotes actual
computations seen as code to be performed with actual side-effects; being code with side-effects,
its precise semantics may vary a lot depending on the meta-system used for ante-computations.
(As for the regular arrow → it will keep denoting both logical implication and pure total functions
without side-effects — equivalently as per the Curry-Howard isomorphism.)

The difference between the two kinds of computation arrows is largely invisible at the level
of logic: all that logic ever manipulates is data, anyway, and from a logical point of view, both
first-class and actual computations have the same semantics. But there is a lot of difference
from the point of view of program extraction. Notably, by the time a computation was actually
performed and had actual irreversible effects on the world, it is too late to undo what is done,
and it is too late to record the computation if it hadn’t been recorded already. The “same”
program may at times be seen from different points of view, depending on the context.

Performing Computations

The first and foremost function that is implicit in any formalization of an actual computation
is thus perform: the function that takes a recording of a computation and makes a computing
device actually perform the computation with all its side-effects. The formalization is useless
and calling what was formalized a computation at all is dubious unless such function exists in
one form or another, inside the system or in a separate meta-system: it’s not a computation if
you can’t perform it.

Now, perform is actually cofunctorial, and has both node-wise and arrow-wise components.
Its signature involves the type State, of the states of the operating system processes, program-
ming language threads, or virtual or real machines that are to run the code for the current
computation; this type State may depend on the Category of computation being performed,
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as well as on the machine on which it is performed. It can be largely opaque to a lot of users of
the protocol, who only care that the computation has the desired observable effect, and aren’t
otherwise interested in the details when they perform the effects.

perform.• : Node → State

perform.=⇒ : ∀ {A B} → (A =⇒ B) → (State 99K State)

In other words, the node-wise component of perform instantiates a first-class representa-
tion of a computation node into a actual computation state; and the arrow-wise component
of perform actually realizes all the changes encoded in a first-class representation of compu-
tation arrow into an actual computation change with all its actual side-effects. Extracting the
computational contents, we have the simpler:

&perform.• : Node → State

&perform.=⇒ : Arrow → (State 99K State)

Simulating Computations

Now, the inverse function simulate isn’t implicit in the formalization of computation. Most
implementations of a computational system don’t provide it. Indeed, it’s usually impossible to
express this function without virtualizing the entire machine, because there is otherwise no way
to capture all the side-effects of all the libraries that your code may indirectly depend upon. It
is functorial, and the signature of its components are:

simulate.• : State → Node

simulate.=⇒ : State → (State 99K State) 99K ∃2 (λ {A B} → A =⇒ B)

The extracted computational contents are:

&simulate.• : State → Node

&simulate.=⇒ : State → (State 99K State) 99K Arrow

In other words, the node-wise component of simulate takes the state of a stopped process
and freezes it as a first-class object that simulates that state in sufficient detail to perform it
in the future, or otherwise reason about it. And the arrow-wise component explicitly takes an
initial state as well as a function to transform that state with side-effects, and returns a record
of the internal changes and external side-effects that running this function would have on the
state, without actually performing those effects.

Note however, how simulate.=⇒ in general itself may have side-effects: the computation
being simulated itself may have side-effects, and when simulating them without performing
them, simulate.=⇒ has to build a model of what these effects will be or can be; this model
may be a precise or approximate formal model, may consult an oracle of what inputs will be
and outputs will do, may do one or multiple runs with random inputs, may fail or stop for
further instructions if some unmodelled, unauthorized or otherwise watched effect happens.
Thus simulate.=⇒ is an effectful function from State to State, though its effects are not
those of the input arrow, but those of simulating it without actually performing it.

It is sometimes useful to actually perform the effects and merely record which they were;
in those case, a specialized version record of simulate may be used, that relies on a trivial
oracle to actually perform the effects (as long as recognized and authorized) instead of trying
to predict what they will be and do. As compared to just performing the computation and
returning the final state, record, just like simulate in general, also returns a record of all the
effects that happened on the way from the initial state to the final state.
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Implemented Computations

For every function that computes on first-class computations and returns first-class computa-
tions, there corresponds evaluatively reflected variants that do notionally the same thing, but
rely on actually performing the computation rather than playing with representations.

Informally, these variants correspond to compiling a program and running it as code in a
post-computation, rather than interpreting the program by manipulating it as data in the ante-
computation. Of course, a valid “compilation” strategy is always to ship an interpreter with the
program being interpreted; but indeed, then the interpreter becomes part of the post-program
doing the actual running, rather than of the ante-program reasoning about the running.

When there is a protocol that ensures that a computation can be actually run, we will
say that the computation is actually implemented. If the computation is a selection of all the
programs in a programming language, then the language is actually implemented.

Reflected Protocol

Let us suppose that the node-wise components of perform and simulate are simple and cheap,
and that instantiating Node or Node into a State or extracting an Node or Node back from a
State is trivial. This is especially the case in a monadic or linear setting, where there is only
one active Node or Node at a time, and it is already embedded in a State when used. Then,
we can abstract away any underlying State and have an interface that works directly on Node.

Now, importantly, when extracting protocol functions, instead of returning arrows, they are
immediately performed. Thus, using ! as prefix for such reflected interfaces, the corresponding
functions would be:

!run : State 99K State

!step : State 99K State

!advance : State 99K State

!eval : State 99K State

The previous functions &run, &step, &advance, &eval could then be seen as instrumented
variants that do not effect the changes but capture them into an arrow with some variant of
instrument, only simulating the computation. Meanwhile, the evaluative reflection protocol
allows users to both“actually”and“directly”run the code, rather than to either merely simulate
it, or having to go through the indirection of explicitly instantiating a separate process.

4.2 A Protocol for Implementations

4.2.1 Soundness Protocol

Having seen how to extract a protocol from a specification using the Computations as an
illustration, we can now apply the same to Implementations.

An implementation of an abstract hyper-computation with a concrete concrete hypo-computation
is first the datum of a partial functor of the concrete computation to the abstract one. The
functoriality automatically gives us soundness:

record Implementation (ao aa co ca : Level) : Set (suc (ao ⊔ aa ⊔ co ⊔ ca)) where

Abstract : Category ao aa

Concrete : Category co ca

interpret : PartialFunctor Concrete Abstract
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This partial functor from Concrete to Abstract is the same as a (total) functor from a
full sub-category Observable of Concrete to Abstract. A PartialFunctor, like all functions,
be they total or partial, deterministic or non-deterministic, will define a relation 7→ between
objects in their domain and those they map to in their codomain. A PartialFunctor, like
all functors and profunctors, will also define a relation Z⇒ between arrows in their domain and
those they map to in their codomain.

It can be extracted as follows, where X 9 Y denotes a partial function from X to Y, which
could be expressed as X → Maybe Y or something equivalent in the target language; such a
partial function f would define a relation f.7→ between objects in X and in Y:

record &Implementation : Set0 where

&Abstract : &Category

&Concrete : &Category

&interpret.• : &Concrete.Node 9 &Abstract.Node

&interpret.=⇒ : &Concrete.Arrow 9 &Abstract.Arrow

4.2.2 Totality Protocol

Recall the diagram for totality:

a

c

Φ

The specification for totality is that given what’s in black, i.e. the abstract node a, we
can deduce what’s in blue, i.e. the concrete node c, with the constraint that a = Φ(c). In
Agda, we can formalize it as a total function totally-implement-• from Abstract.Node to
Concrete.Node, with an additional law:

totally-implement-• : Abstract.Node → Concrete.Node

totally-implement-•-left-inverse-of-interpret :

∀ {a : Abstract.Node} {c : Concrete.Node}

(totally-implement-• a = c) → (c interpret.7→ a)

It can be extracted as follows, dropping the corresponding law:

&totally-implement-• : &Abstract.Node → &Concrete.Node

But it suggests that even without totality, you probably want a partial function:

try-implement-• : Abstract.Node 9 Concrete.Node

try-implement-•-left-inverse-of-interpret :

∀ {a : Abstract.Node} {c : Concrete.Node}

(a try-implement-•.7→ c) → (c interpret.7→ a)

Or instead with arbitrary meta-level side-effects (e.g. partiality, non-determinism, excep-
tions, etc.):
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implement-• : Abstract.Node 99K Concrete.Node

implement-•-left-inverse-of-interpret :

∀ {a : Abstract.Node} {c : Concrete.Node}

(a implement-•.7→ c) → (c interpret.7→ a)

Which extract as:

&try-implement-• : &Abstract.Node 9 &Concrete.Node

And:

&implement-• : &Abstract.Node 99K &Concrete.Node

4.2.3 Completeness Protocol

Now recall the diagram for completeness:

a a′

c c′

A

C

Φ Φ

The specification for completeness is that given what’s in black, i.e. a concrete node c that
interprets into abstract node a, and an abstract arrow f from a to some a′, we can deduce what’s
in blue, i.e. a concrete arrow g from c to some node c′, with the constraint that f = Φ(g).
In other words, we have total function completely-implement-=⇒ from Concrete.Node and
Abstract._=⇒_ to Concrete._=⇒_:

completely-implement-=⇒ :

∀ (c : Concrete.Node) {a a’ : Abstract.Node}

{c interpret.7→ a} (a Abstract.=⇒ a’) →

∃ (λ {c’ : Concrete.Node} → (c Concrete.=⇒ c’))

completely-implement-=⇒-left-inverse-of-interpret :

∀ (c c’ : Concrete.Node) {a a’ : Abstract.Node}

{f : a =⇒ a’} {g : c =⇒ c’} →

(f completely-implement-=⇒.Z⇒ g) → (g interpret.Z⇒ f)

Omitting proofs and implicit arguments that can be deduced from the explicit ones, it can
be extracted more simply as:

&completely-implement-=⇒ : &Concrete.Node → &Abstract.Arrow → &Concrete.Arrow

But as with totality, this suggests that even without completeness, you probably want a
partial function:

try-implement-=⇒ :

∀ (c : Concrete.Node) {a a’ : Abstract.Node}

{c interpret.7→ a} (a Abstract.=⇒ a’) 9

∃ (λ {c’ : Concrete.Node} → (c Concrete.=⇒ c’))
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try-implement-=⇒-left-inverse-of-interpret :

∀ (c c’ : Concrete.Node) {a a’ : Abstract.Node}

{f : a Abstract.=⇒ a’} {g : c Concrete.=⇒ c’} →

(f try-implement-=⇒.7→ g) → (g interpret.Z⇒ f)

Or instead with arbitrary meta-level side-effects (e.g. partiality, non-determinism, excep-
tions, etc.):

implement-=⇒ :

∀ (c : Concrete.Node) {a a’ : Abstract.Node}

{c interpret.7→ a} (a Abstract.=⇒ a’) 99K

∃ (λ {c’ : Concrete.Node} → (c =⇒ c’))

implement-=⇒-left-inverse-of-interpret :

∀ (c c’ : Concrete.Node) {a a’ : Abstract.Node}

{f : a Abstract.=⇒ a’} {g : c Concrete.=⇒ c’} →

(f implement-=⇒.7→ g) → (g interpret.Z⇒ f)

Which extract as:

&try-implement-=⇒ : &Concrete.Node → &Abstract.Arrow 9 &Concrete.Arrow

And:

&implement-=⇒ : &Concrete.Node → &Abstract.Arrow 99K &Concrete.Arrow

4.2.4 Fullness Protocol

We’ll go faster over fullness. Fullness was this property:

a a′

c c′

A

C

Φ Φ

It can be formalized and extracted as follows, and can also have weaker variants ending with
9 or 99K, that we’ll omit.

fully-implement-=⇒ :

∀ (c c’ : Concrete.Node) {a a’ : Abstract.Node}

{c interpret.7→ a} {c’ interpret.7→ a’} (a Abstract.=⇒ a’) →

(c Concrete.=⇒ c’))

fully-implement-=⇒-left-inverse-of-interpret :

∀ (c c’ : Concrete.Node) {a a’ : Abstract.Node}

{c interpret.7→ a} {c’ interpret.7→ a’}

{f : a =⇒ a’} {g : c =⇒ c’} →

(f fully.7→ g) → (g interpret.Z⇒ f)

&fully-implement-=⇒ :

&Concrete.Node → &Concrete.Node → &Abstract.Arrow → &Concrete.Arrow
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We now see how we could deduce Completeness from Strong Completeness, the conjunction
of Fullness and Totality. The computational content of it would be equivalent to defining
&completely-implement-=⇒ as follows:

&completely-implement-=⇒ c f =

let c’ = &totally-implement-• (&codomain f) in &fully-implement-=⇒ c c’ f

And then we see that if there are any non-deterministic choices in implementation, this will
be very inefficient when the choices made for c’ = (&totally-implement-• (&codomain f))

don’t match those made for c, whereas an efficient implementation of &completely-implement-
=⇒ could let the choices made in c plus a path-dependence on f determine the choices made
in c’. Implementing Completeness via Strong Completeness is over-constraining c’ without
taking into account the information in c and f; and &totally-implement-• can be much more
expensive than implementing f by following steps from a previously computed implementation
c.

4.2.5 Liveness Protocol

It will be somewhat more subtle to extract a protocol from Liveness. Recall the diagram:

a a′

c′

c c1 c2 cn

A+

Φ

C+

Φ

C+

A direct formalization goes something like this, assuming an appropriate definition for
StrictMonotonicFunction:

liveness :

∀ {c : StrictMonotonicFunction N.< Concrete.advancing}

{a : Abstract.Node} {c0 : Concrete.Node}

{0 c.7→ c0} {c0 interpret.7→ a}

∃2 (λ (c’ c’’ : Concrete.Node) →

∃2 (λ (n : N) (n c.7→ cn) →

∃2 (λ (f : c Concrete.=⇒ c’) (g : c’ Concrete.=⇒ cn) →

∃2 (λ (a’ : Abstract.Node) (h : a Abstract.=⇒ a’) →

∃ (λ (c’ interpret.7→ a’) →

(f interpret.Z⇒ h))))))

Now, positting an infinite sequence of advancing concrete steps isn’t very constructive; in
other words, its computational contents aren’t very usable: first, no one is going to actually
provide an infinite sequence of transitions as reified input; second, unless in practice there’s a
small enough bound on n, the property alone is too weak to be directly useful. Still the property
being weak is a good criterion to reject as less-than-generally-useful implementations that do
not possess the property.

However, a more useful point of view is to realize that this infinite sequence of advancing
concrete steps is to be understood not as reified progress that the meta-level can coldly reason
about, but reflected progress that the meta-level is experiencing in all its side-effectful glory:
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something that intrinsically requires one to use 99K instead of merely →. Formally, it would look
like that, where the dashed arrow is analogous to that of advance in subsection 4.1.4:

advance-abstract-computation :

∀ (c : Concrete.Node) {a : Abstract.Node} {c interpret.7→ a} 99K

∃2 (λ (c’ c’’ : Concrete.Node) →

∃2 (λ (f : c Concrete.advance.7→ c’) (g : c’ Concrete.=⇒ c’’) →

∃2 (λ (a’ : Abstract.Node) (h : a Abstract.=⇒ a’) →

∃ (λ (f interpret.Z⇒ h) →

a Abstract.advance.7→ a’))))

The formula above just says that you can achieve an abstract advance from a (the final
term of the dependent product) by a meta-level computation (the first, dashed, arrow, after
the hypotheses) starting from a concrete implementation of the abstract computation. The
extracted interface is then simply as follows, a way to emulate the abstract computation’s
&Abstract.&advance just by acting on the concrete computation:

&advance-abstract-computation : &Concrete.Node 99K &Concrete.Arrow

The implicit contract (lost during extraction) being that the result implements an advance
in the concrete computation that goes past (a concrete arrow that interprets as) an advance in
the abstract computation.

Variants of Liveness

Bounded Liveness, Strong Liveness, Bounded Strong Liveness, Strong Step Preservation (see
subsection 3.2.3) have stronger contracts than Liveness, that make them more usable in many
ways. A proper formalization of their respective contracts would require more effort than we’re
interested in putting for that purpose, and we’re leaving it as an exercise to the reader: you need
to equip your operational semantics with some kind of additive measure and/or set of atomic
computation arrows, and assert that an adequate advance in the abstract computation can be
achieved through a sufficient advance in the concrete computation. Interestingly, though, when
you extract the computational content of these properties, you still get the same type after
erasing the logical part of the contract:

&advance-abstract-computation-in-bounded-time :

&Concrete.Node 99K &Concrete.Arrow

&advance-abstract-computation-to-observable-point :

&Concrete.Node 99K &Concrete.Arrow

&advance-abstract-computation-to-observable-point-in-bounded-time :

&Concrete.Node 99K &Concrete.Arrow

&step-abstract-computation-in-bounded-time :

&Concrete.Node 99K &Concrete.Arrow

It’s just that your advance variants have slightly different requirements and guarantees
attached to both the abstract and concrete computations under consideration, with respect to
real-time bounds, coherence, synchronization. For all its weakness, the virtue of Liveness is
to embody the common spirit of these many properties, their common computational content,
precisely without imposing any overly specific guarantee.
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4.2.6 Co-Liveness Protocol

Co-liveness was not expressible as a diagram in our simple language of diagrams, because that
language cannot directly deal with either negation or logical disjunction, and therefore couldn’t
express either the done predicate or its relationship with advancing. (That language of diagrams
could of course be extended to support one kind of logical “or” or another, but that’s a different
issue). The logical language of Agda has no such limitation, and it can express co-liveness
simply as follows, where done is the same as in subsection 4.1.4:

done-means-done :

∀ (c c’ : Concrete.Node) {a : Abstract.Node} {c interpret.7→ a}

(c Concrete.=⇒ c’) Concrete.done c →

∃2 (λ (a’ : Abstract.Node) {c’ interpret.7→ a’} → Abstract.done a’)

Here is a case where there is no computational contents to extract: co-liveness is a promise
made that a logical constraint is respected, which leaves nothing to express when you drop
logical constraints. It just means that the function &Concrete.&done, when it returns true on
a node that results from running the computation, ensures that that node has an observable
meaning for which &Abstract.&done also returns true (and itself satisfies the specification for
being done).

Advance Preservation

We’ll skip relevance, which was a conceptual stepping stone from co-liveness to observability but
on its own is a bit too complex to formalize, and its computational contents accordingly awkward
to use. Instead, we will directly extract the computational contents of advance preservation
and observability, that better factor the concept.

The diagram for advance preservation was as follows:

a′′

a

a′

c c′

A+

A+

C+

Φ
Φ

It can be formalized as follows:

advance-abstract-computation-if-possible :

∀ (c : Concrete.Node) {a : Abstract.Node} {c interpret.7→ a}

{a’ : Abstract.Node} {f : a Abstract.=⇒ a’} (Abstract.advancing f) →

∃2 (λ (c’’ : Concrete.Node) (g : c Concrete.=⇒ c’’) →

∃2 (λ {c’’ interpret.7→ a’’} {h : a Abstract.=⇒ a’’} →

∃ (λ {g interpret.Z⇒ h} →

Abstract.advancing h)))

But in the end, the extraction has the same type as for liveness: given a concrete node for
which the abstract computation isn’t done, return a concrete arrow from that node that has an
abstract meaning that is advancing the abstract computation. As usual the subtle difference in
meaning is left implicit in the poorer extraction target type system.

&advance-abstract-computation-if-possible : &Concrete.Node → &Concrete.Arrow
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4.2.7 Observability Protocol

The crown jewel of our implementation properties, Observability, has the following diagram:

a a′′

c c′ c′′

A

C

Φ

Cs

Φ

It can be formalized as follows:

observe :

∀ {c : Concrete.Node} {a : Abstract.Node} {c interpret.7→ a}

(c’ : Concrete.Node) {f : c Concrete.=⇒ c’} →

∃2 (λ (c’’ : Concrete.Node) (g : c Concrete.=⇒ c’’) →

∃2 (λ (a’’ : Abstract.Node) {h : a Abstract.=⇒ a’’} →

∃ (λ (not-advancing g) →

(g Concrete.◦ f) interpret.Z⇒ h)))

Its computational contents can then be reduced to the following:

&observe : &Concrete.Node → &Concrete.Arrow

The function takes a concrete node c’ and returns a non-advancing transition arrow g from
c’ to an observable state c’’.

Note how we’re not passing any of c or a or f as parameters, or returning any of a’’ or h,
anymore than the correctness proofs: we assume that they are part of the prerequisite logical
constraints excised during the extraction. Indeed, in practice we assume that the protocol
function &observe will only be called on a node c’ that is indeed the interrupted intermediate
state of a computation; and we assume the returned values are correct.

We can then define the following utility functions:

&observe.• : &Concrete.Node → &Concrete.Node

&observe.• c = (&Concrete.&codomain (&observe c))

&observe.=⇒ : &Concrete.Arrow → &Concrete.Arrow

&observe.=⇒ f = (&observe.• (&Concrete.&codomain f)) &Concrete.◦ f

&observe.• synchronizes a concrete node to a safe point that is observable. &observe.=⇒
takes a concrete arrow f from an observable node c to an arbitrary node c’, and returns an
arrow from c to an observable state c’’ that is the composition of a non-advancing transition
arrow g with f.

4.2.8 Variants of Observability

There again, Observability has many variants, such as Observability for correct programs,
Bounded Observability, or Strong Observability. Formalizing them logically will require a lot of
additional formalism, such as a definition of correct program, or a notion of length for concrete
computations, and some specific notion of advancing that may differ from that used in other
contexts. We leave this formalization as an exercise to the reader who cares. In the end, all
these logical variants involve passing as extra arguments and/or receiving as extra results some
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compile-time values that witness a proof of correctness of the extra invariants required. But
when you extract functions for a computational protocol, all these these extra arguments and
results disappear, and the function signature remains:

&observe-variant : &Concrete.Node → &Concrete.Arrow

In the end, all these variants of Observability correspond to taking the concrete computation
at an arbitrary intermediate point, and synchronizing to the nearest safe point, at which the
concrete computation is observable, and an interpretation can be obtained.

4.3 Implementation Reflection

4.3.1 Properties as Abstractive Reflection

If we look closely at the computational content of all the nice properties we may require from
an implementation, it appears they constitute a protocol for Abstractive Reflection (see section
1.3).

Indeed, underlying Totality and Completeness, or even partiality and incompleteness, is
an implementation protocol: specifications for a profunctor implement and its extraction as
functions &implement.• and &implement.=⇒. And underlying Soundness, combined with
Observability, is an interpretation protocol: specifications for a partial functor interpret and
its extraction as functions &interpret.• and &interpret.=⇒. The computational content of
these properties is the ability to navigate up and down the levels of a tower of abstraction.

4.3.2 Lifting Evaluative Reflection Protocols

As for Liveness, combined with Observability, it allows to lift the Concrete computation’s eval-
uative reflection protocol into an evaluative reflection protocol for the Abstract computation.
For simplicity, we will only show how to lift the extracted versions.

First we can lift the abstract perform and simulate functions from the concrete ones:

&Abstract.&perform.• : &Abstract.Node → State

&Abstract.&perform.• a = &Concrete.&perform.• (&represent.• a)

&Abstract.&perform.=⇒ : &Abstract.Arrow → State 99K State

&Abstract.&perform.=⇒ a s =

let c = (&represent.• s) in

&Concrete.&perform.=⇒ (&represent.=⇒ c s) c

&Abstract.&simulate.• : State → &Abstract.Node

&Abstract.&simulate.• s = &interpret.• (&Concrete.&simulate.• s)

&Abstract.&simulate.=⇒ : State → (State 99K State) 99K &Abstract.Arrow

&Abstract.&simulate.=⇒ s a =

&interpret.=⇒ (&observe.=⇒ (&Concrete.&perform s a))

Then we can lift the &run and sibling functions:

&Abstract.&run : &Abstract.Node 99K &Abstract.Arrow

&Abstract.&run a =

&interpret.=⇒ (&observe.=⇒ (&Concrete.&run (&represent.• a)))
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&Abstract.&step : &Abstract.Node 99K &Abstract.Arrow

&Abstract.&step a =

&interpret.=⇒ (&advance-abstract-computation-one-step-in-bounded-time (&represent.• a))

&Abstract.&advance : &Abstract.Node 99K &Abstract.Arrow

&Abstract.&advance a =

&interpret.=⇒ (&observe.=⇒ (&advance-abstract-computation (&represent.• a)))

&Abstract.&eval : &Abstract.Node 99K &Abstract.Arrow

&Abstract.&eval s =

&interpret.=⇒ (&Concrete.&eval s)

Finally with the help of a helper function !observe, we can lift the evaluatively reflected
function !run and its siblings:

!observe : State 99K State

!observe = &Concrete.&perform.=⇒ (&observe (&Concrete.&simulate.• s)) s

&Abstract.!run : State 99K State

&Abstract.!run s = !observe (&Concrete.!run s)

&Abstract.!step : State 99K State

&Abstract.!step s =

&Concrete.&perform

(&step-abstract-computation-in-bounded-time (&Concrete.&simulate.• s)) s

&Abstract.!advance : State 99K State

&Abstract.!advance s = (&advance-abstract-computation

!observe

(&Concrete.&perform

(&advance-abstract-computation (&Concrete.&simulate.• s)) s)

&Abstract.!eval : State 99K State

&Abstract.!eval s = &Concrete.!eval s

Note that the above definitions equality are meant as a specification, but not as a naive
computational recipe: it can be computationally expensive to simulate the entire computation
state only to perform back a small change to it; but if the reification is done lazily, if meta-
level computation is inlined, if the intermediate data structures are deforested away, or if the
specification is otherwise properly “optimized”, then yes, this specification can be compiled into
code of acceptable quality that may synchronize the computation being currently executed in
a provably correct way.

4.3.3 Implementations as Implementations

In subsection 4.1.5 above, we called it for a computation to be actually implemented if there
existed an evaluative reflection protocol for it. We just justified why the name Implementation
befits the entity we called “Implementation”: if there is an Implementation of an abstract
computation A with a concrete computation C and C is actually implemented (down to e.g.
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being the states of an Operating System process), then indeed A is also actually implemented
thanks the the lifting described in the previous subsection.

An Implementation thus allows us to reduce the problem of actually implementing a com-
putation A to that of actually implementing a computation C.

However, we also realize the importance of some of the properties that were otherwise
neglected in existing software and previous literature:

• Observability, notably, is necessary to maintain full abstraction of the details of hypo-
computations when reasoning about hyper-computations.

• The ability to interpret, implement and reason about not just nodes, but also arrows, is
also crucial in maintaining this protocol.
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Chapter 5

Programming with First-Class
Implementations

5.1 Expressing Known Phenomena

5.1.1 Testing a theory

You don’t test the validity of a theory by seeing that it says correct things, but by seeing that
it doesn’t say incorrect things. What you test by seeing that it does say correct and previously
unpredicted things, is the interest of a theory you’ve tested to be valid.

In logic and mathematics, any theory is valid as long as it is consistent; this as such is a very
low bar, but then it can be quite hard to discover something interesting that can be proven to
be valid. In computer science, logical constraints are even laxer, and any code that compiles can
be considered valid, as long as no overly broad promise is made as to what the code does; as for
criteria of interest, they tend to be even more subjective than in mathematics — which makes
for a large market in ideas that someone, anyone, finds interesting enough to spend resources
on.

The theory we propose is quite poor in terms of new results. The few relatively new con-
structs it proposes, mainly having to do with how Observability generalizes PCLSRing, are
quite trivial, at least after the fact. Subsequent chapters will build on these constructs, but
provide even less theory – and even then, most of the applications we propose have already
been achieved somehow even in absence of our theory. The question is then: is our theory
interesting, beside obvious making the importance of this one concept, Observability?

5.1.2 A Simplifying Paradigm

We will argue that our theory is useful in that it allows to think in simple terms a lot of
phenomena that are well-known in computer science, yet seldom discussed clearly, by lack of
an adequate paradigm. We will thus suggest a few ways that our theory underlies a simplifying
paradigm that can clarify existing techniques and concepts.

All the techniques we’ll discuss are very well known. Yet we contend that our approach can
be bring some new insight, or at least make some old insight simpler and more obvious. This
insight can be used informally when designing or analyzing systems or formally when developing
correctness proofs of systems, or systems that automatically prove correctness of what they do.
And this insight leads to developing and using composable metaprogramming frameworks at

89
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both compile-time and runtime. Of course this is all easier said than done; nonetheless it is
better said than kept implicit, or worse, ignored.

5.2 Elucidating Compilation

5.2.1 Intent

Our notion of implementation provides an obvious semantic framework to reason about the
correctness of compilers, and the many properties that these compilers may or may not guar-
antee with respect to the implementation they provide for the programs they compile. Once
again, Totality, for instance, is out of reach for the implementation of an infinite language on
a finite machine; but the failures may be clearly confined to one level of abstraction at which
point there could be better defined coping strategies compared to a situation where the looming
existence of failure cases inevitably exists but escapes specification.

But thinking in terms of implementations can bring broader insight as to the nature of the
activity of implementing and using a programming language. We will use some of our diagrams
to illustrate such insight.

5.2.2 Compilation as Implementation

A compiler is clear meta-level concept: it is an ante-program, running in the ambient operating
system, that given a (first-class representation of a) program generates a (first-class represen-
tation of a) machine-runnable hypo-program that preserves its semantics. The simplest way
of thinking of a compiler is as an implementation profunctor, that takes computations in an
abstract category A, that embodies the programs as specified by the programmer’s source code,
and returns computations in a concrete category C, that embodies the binary machine code
actually runnable by the computer.

In our diagrams, we will keep representing the functorial interpretation arrows rather than
the co-functorial implementation arrows. The diagram for this simple way of thinking is there-
fore as follows:

A

C

Φ

And the signature would be:

compile : {A C} Implementation A C → (A.Node 99K C.Node)

compile I a = I.&implement.• a

Of course, this compiler may be made of many passes, which means that it can be seen as
the composition of many implementations, each further transforming the computation while
preserving its semantics. But since functions can always be decomposed into further more
elementary functions, we will not usually represent that in our diagrams — that will remain
the obvious implicit. Instead, we will focus on diagrams that can’t be simplified by merging
passes.
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5.2.3 Source as Representation

Now, the previous diagram assumed that programmers can directly specify the computation
they mean, in the abstract category of programs with their associated semantics. But actually,
what programmers manipulate is not abstract programs, but concrete source code.

Source code contains many details that are irrelevant to the abstract program that is meant
for the computer to run. For instance, comments are directed to other programmers, whereas
identifiers are interchangeable labels for the sake of the running program: some of them matter
when displaying debugging information, but that’s usually not all of them, and only in a special
failure mode; in a deep sense they don’t matter to the semantics of the program. The source
program may also include a lot of distinctions that will hopefully be optimized away, such as
the order in which some operations are done, or the fine details of some arithmetic formula.

The compiler is allowed and expected to transform the program “up to” equivalence with
respect to the semantics of some abstract computation A, then emit an implementation of this
equivalent program in the concrete computation C. But the programmer actually writes in a
programming language S that is in a way“lower level” than A, since it includes many additional
details and distinctions: it’s just lower level in a different way than matters to the computer;
it’s lower-level in a way that matters for human brains.

The diagram for this slightly more elaborate way of thinking is as follows:

A

S

C

Σ

Φ

And the signature would be:

compile : {S A C} Implementation A S → Implementation A C →

(S.Node 99K C.Node)

compile IAS IAC = IAC.&implement.• ◦ IAC.&interpret.•

5.2.4 Semantic Gap between Meaning and Understanding

Now, the above picture is an improvement in explaining what a compiler is about, but it still
doesn’t tell the entire stories.

So, programmers write their programs in S, but actually intend to denote some abstract
program in A where equivalent computations are identified together as a same ideal program.
The hope is that the compiler can then consider all computations equivalent to the meaning
source program, and rewrite the program into one that can be most efficiently translated to
machine code that the computer can actually run. From the point of view of the compiler
specification, these rewrites can be seen as non-advancing arrows mutually relating all starting
nodes in each equivalence class of the computation: the compiler may pick any of these semantic-
preserving “optimization” rewrites when it implements the program.

However, equivalence of computations is not a computable criterion: an algorithmic way to
identify all operationally equivalent programs would trivially solve the halting problem which
we know is impossible [25]. Therefore, what an algorithmic compiler does is necessarily weaker
than that. The algorithmic compiler can only consider computations up to some computable
equivalence relation that is weaker than operational equivalence. This computable equivalence
relation corresponds to a computable subcategory U of A, where only some of the valid rewrites
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are considered, and most potential rewrites are actually ignored. The “optimization” rewrite
arrows included in U are a strict subset of the rewrite arrows allowed in A. In other words, U
is not a full implementation of A; there is necessarily a semantic gap (denoted by the arrow
Gap below) between the full semantics and the little that the compiler can actually take into
account when optimizing while keeping the problem tractable.

The diagram for this yet more elaborate way of thinking is as follows:

A

U

S

C

Gap

ΣU

Σ

ΦU

Φ

And the signature would be:

compile : {S U C} Implementation U S → Implementation U C →

(S.Node 99K C.Node)

compile IUS IUC = IUC.&implement.• ◦ IUC.&interpret.•

The Understanding Gap is also for Humans

Note that conversely, programmers have to specify their programs in the logic of A, but their
actual intent could be both wider or narrower than what the logic of A allows to express.

On the one hand, a programmer might actually want“any program that solves his problem”,
and there might be a large class of such programs beyond the one he writes; the differences
might be cosmetic, as in using icons of a different color; or they might be profound, as in
using a radically different approach to realizing a real-world solution (such as designing a cheap
analog physical sorter to distinguishing zipper tabs instead of an elaborate robot with digital AI
vision software to recognize them then pick them when improving the robotized manufacture
of zippers). [citation needed] Ideally (from the point of view of the programmer), he could just
use one instruction “DWIM” [citation needed] and, taking into account the context, the compiler
could be able to rewrite that into a program that best solves his issue.

On the other hand, the programmer might be mistaken in what rewrites A allows and write
a program that happens to work in U because the compiler won’t rewrite the program into one
that doesn’t work anymore for the programmer’s purpose; but an update to the compiler might
include deeper analyses and a wider set of optimizing rewrites, resulting in a larger semantics
U ′ closer to A, in which the same program is indeed rewritten into one that fails catastroph-
ically. This latter phenomenon is unhappily frequent in C programs, whereby compilers are
allowed to arbitrarily rewrite programs in the advent of a large class of specified “Undefined
Behaviors” (UB); earlier compilers do not rewrite some programs despite their UB, and the
compiled programs then happen to match the intent of the programmer; then a latter com-
piler is able to recognize the UB, and rewrites programs in ways that defeat the intent of the
programmer, which can introduce computer crashes, data loss, data corruption, or security
vulnerabilities.[citation needed]

And of course, humans can fail to properly understand any of those computation categories
at all, or to act on this understanding — but that constitutes a more trivial class of bugs about
which the above diagram bring no enlightenment.
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5.2.5 Static Typing

In chapter 4, our implementations ultimately rested upon a same type State into which all
computations were reduced, whatever their level of abstraction was. However, this doesn’t
mean that in the end our implementation framework necessarily reduces down to a trivially
typed or otherwise “dynamically typed” system. Indeed, while all abstraction levels for a given
computation reduce to a same single type, different computations may each be reduced to their
own distinct type.

Indeed, be reminded that our computations, as categories, embody operational semantics.
Types, by contrast are denotational semantics, which as we saw in subsection 2.2.5, are more
abstract categories with no non-trivial arrows. Therefore, when a computation is typed, we
have an abstract interpretation (see 2.2.6) from said computation to the the type system. If a
node in the computation is mapped to a given type, all the arrows reachable from a node in this
computation are necessarily mapped to the identity arrow for that type (which the only arrow
with that type as a domain), and all nodes reachable from said node are therefore also mapped
to the same type. This property, known as subject reduction, is a basic soundness property for
static type systems.[citation needed]

We can thus visualize compilation of a typed language as per the following diagram:

T

{τ}

A

Aτ

U

Uτ

S

Sτ

Cτ

Let’s consider the source language S, the abstract computation A representing the desired
operational semantics of all well-formed programs in S, and the type system T for valid programs
in A. We have partial functors from S to A and A to T , where the partiality indicates that
not all programs are well-formed, and not all well-formed programs are well-typed. Now, the
well-formed and well-typed programs of type τ constitute a subcategory Sτ or S, and their
operational semantics constitute a subcategory Aτ of A, and by definition they type into a
single type τ . Knowing that the program is well-typed and that its static analysis yields type
τ , the compiler can apply a number of type-specific rewrite strategies specific to Aτ , not all
of which would be valid in all of A. Of course, as per subsubsection 5.2.4 above, the actual
strategies it will are necessarily a computable subset Uτ of Aτ (where U once again stands for
Understood semantics).

Thus, when compiling an expression of type τ from a high-level programming language
to a low-level programming language, the actual type State of all the nodes in the concrete
computation at the bottom may actually be ConcreteState τ where ConcreteState is some
appropriate functor parametrized by τ . Note that τ here is not necessarily the human-readable
type used by in static type system designed for humans to specify; it can actually be an even
finer type resulting from some arbitrarily elaborate static flow analysis of the program behavior.
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5.3 Further Compilation Topics

5.3.1 Aspect Oriented Programming

An interesting case of multiple programming with multiple abstraction levels is Aspect-Oriented
Programming [14], where the multiple levels are used not for software analysis, but for software
synthesis.

Aspect-Oriented Programming (AOP) is a programming paradigm according to which pro-
grammers will separately specify several distinct aspects of their programs, such as authentica-
tion and access policies, logging of various events, allocation of resources, strategies to follow
for various tasks, etc.

The hope is that by keeping each of many aspects separate, it becomes easier to reason
about the program than if the programmer has to understand all the aspects at once; therefore,
harder problems may be tackled with fewer bugs. The cost of it is creating and maintaining an
architecture in which these aspects are and remain independent enough indeed so that reasoning
about one aspect doesn’t involve pulling in all the other aspects into the reasoning context.

The problem would be trivial if the aspects were independent (or “orthogonal”). with a
solution being simply (an implementation of) the cartesian product of the aspects. But what
makes AOP interesting is precisely the automation of weaving when the aspects are not inde-
pendent. Aspects are then said to cross-cut. This can be stated formally by adding constraints
on the cartesian product of the aspects that restrict what computations are valid in the intended
system.

A useful tool for specifying the cross-cutting of aspects in a declarative way is join-points. A
specific join-point is are events such as a named function being called with certain parameters,
or its returning. Various aspects may then specify additional behavior that has to happen at,
before, after or around such join-points: checking the caller has proper credentials, logging the
event, tracking ownership of the computation, allocating then deallocating some resources, etc.
Whatever that specific aspect deals with.

Once the aspects are specified, they are weaved together by an ante-program called an aspect
weaver to generate the actual program. Priority rules may further constrain how the weaver
may combine or schedule the behaviors specified by the various aspects. That weaver may then
fail with an error if the aspects specify an invalid combination (or if any aspect is invalid by
itself).

Using our notion of implementations, we can model the semantics of AOP in terms of simul-
taneously implementing several programs, one per aspect. Formally, a programming language
is specified by having a number of aspects, say A1, A2, A3. Join-points correspond to forgetful
functors, say Ψ1, Ψ2, Ψ3, linking each aspect to an aspect-less computation J that specifies
the join-points (each Ψn forgets the specifics of aspect An). We are looking for some forgetful
functors, say Φ1, Φ2, Φ3, that will map a more concrete language C to each of these aspects
(each Φn forgets the specifics of all aspects except An). The diagram is as follows:
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J

A1 A2 A3

C

Ψ1

Ψ2

Ψ3

Φ3

Φ2

Φ1

Given abstract programs in each of these aspects, say, a1, a2, a3, the problem is then to find
a concrete program c that simultaneously implements each of those abstract programs:

j

a1 a2 a3

c

Ψ1

Ψ2

Ψ3

Φ3

Φ2

Φ1

AOP can thus be formalized using our framework. Within that framework, the aspects
a1 . . . an appear as constraints on the specified hypo-program c; and weaving the aspects appears
as a problem in Constraint Logic Programming [citation needed], except at the meta-level (the ante-
stage, in our nomenclature): the aspect weaver is a constraint solving logic metaprogram. And
indeed, custom Aspect-Oriented Programming systems can be built quite effectively by writing
ante-programs in a suitable logic programming framework [26]. What our approach suggests is
a way that aspect constraints can be formalized, to enable reasoning about correctness proofs
for logical properties of aspect-oriented programs.

5.3.2 Navigating the Semantic Tower

When figuring out how a program works or fails to work, so as to use it or improve it, program-
mers have to work at several levels of abstraction. The ability of navigating the many levels
of abstraction involved in a program is perhaps the defining quality of good programmers; it is
certainly a factor that limits how elaborate programs can get before they become impossible to
either write or maintain.

Our framework makes it possible to formalize this problem to a point; and it suggests a
class of tools that could be developed to help with the issue. Consider the following diagram:
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A

U1

U2

U3

C1

S

C2

H

Gap

When specifying a computation, programmers provide the computer system source code
S in some programming language (or set of such). The formal specification for S defines an
abstract semantics A for it.

Programmers also specify at what level of abstraction the program should be considered.
This level of abstraction, U2 in the above diagram, indicates what rewrites are permissible to
the compiler for the sake of “optimization” (see previous subsection 5.2.4).

Above are higher levels of abstractions, that allow for more rewrites, but sacrificing some
details that the programmer might (or then again might not) care about. That’s U1, A in the
diagram, but of course, there is no limit to how many levels and sub-levels could be considered
instead, and A is a false top because no finitely describable system can encode all the true
logical properties of the computation[10].

Below are lower levels of abstractions, that add more details that the programmer doesn’t
usually care about (or else he would have specifically selected a higher level of abstraction
and enabled more compiler optimizations; then again, he might only trust the compiler so
much). That’s U1, C1, C2, H in the diagram, where the Cn are supposedly more concrete
representations, from high-level language down to virtual machine, to linkage with some low-
level language like C, to assembly language, and bottoming out to H, which stands for the
hardware.

However, at the bottom no less than at the top, there is no limit to how many levels and
sub-levels could be considered, and you could always descend lower: not just into hardware
instructions, not just into VHDL specifications or silicon masks, but into equations describing
electric potentials, or the behavior of quantum particles, or superstrings, or hypothetical entities
computing digital physics [citation needed].

Note that programmers can select not just between the levels Un of formal understanding
of the language by the compiler, but also between the levels Cn of concrete representation used
by the compiler: not only can programmers inspect the bytecode or assembly files produced
by the compiler, they can also carefully pick which version of which compiler is used — and
even modify the compiler. It is possible for programmers to have as much (or as little) control
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as they want at compile-time. They can even change the hardware level H by running on a
different CPU, whether through physical hardware, or through software emulation.

Navigating Abstraction Levels at Runtime

Now, this control doesn’t have to be at compile-time! If each implementation in the semantic
tower provides a full reflection protocol both abstractive and evaluative, then it becomes possible
for programmers to decide at runtime what level of abstraction they are interested in.

This means that when they are debugging a difficult issue, they can simulate and re-perform
the interaction, zoom in and out at will, locate the issue and focus on it until they pinpoint the
bug at the level of detail that best explains it. If they have enough simulation records of what
good looks like, they could even train programs to do most of the detection work automatically.

We’ll elaborate on that topic in the following chapters.

Non-Linearity in the Tower

Of course, we already saw when discussing Aspect-Oriented Programming that abstraction
needs not be a linear order, but can be of any partial order. Thus the semantic tower needs not
be linear, but can have any shape. Consider the following diagram — without bestowing too
much importance to its arbitrary particulars, meant solely to illustrate cases of non-linearity:

A

U1

U2

U4

U3

U5

S

C1 C2

C3

C4

C5

C6

H

Gap

Not every pair of node is comparable: in the above diagram, U2 and U4 deal with mutually
irreducible aspects, although if you descend to level U5 you can express both concern; Yet again,
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if you descend into C1 or C2 you have mutually irreducible computations. Mutually irreducible
computations could take into account aspects such as serializing thousands of concurrent com-
putations into events on a handful of CPUs, taking garbage collection cycles into account, the
accounting of various resources, the logging of progress messages, the intermediate states in a
distributed transaction protocol, the exact addresses of various data structures in memory, etc.

The programmer may at times want to focus on any of those levels of abstration. What
more, while debugging an issue, he may be considering some lower level of abstraction on the
part of the program experiencing the issue than on the rest of the system that is behaving as
expected. What more, if there are a distinct abstraction levels available at which to consider
one piece of the program (that would be 14 including source code level in the above arbitrary
diagram), then for every way that one may factor part of the computation as the interaction of
n similarly abstractable pieces, there will be an ways of abstracting the overall system.

Therefore, while the simple diagram of a linear semantic tower with a small number of
totally ordered abstraction levels might make sense when describing the architecture of a single
compiler’s passes, it just isn’t applicable in the more general case of navigating abstraction levels
at runtime, as becomes possible with our protocol: there are infinitely many ways to decompose
and recompose software, to rearrange existing abstraction layers into new hierarchies; and there
are even more ways to contrive and use wholly new abstraction layers, including ones that hadn’t
been invented yet when the program was first started.

5.3.3 Refactoring

Refactoring a program can be understood in terms of our semantic diagrams:

A

U

S S′

Gap

Φ

Φ′

A source program S has some understood semantics U , that itself is a computable subset
of some abstract semantics A. Another source program S′ is sought that is better in some way,
but within the constraint that the change shall preserve the very same semantics U .

A suitable ante-system in which U is formalized can help automate part or totality of
this change, while ensuring that the constraint is satisfied in the end. Even when automated
decisions can’t be made for sure (e.g. splitting an identifier in two initially equivalent identifiers),
it might keep track of how far you are from the goal, by maintaining a checklist of places where
decisions need be made (the occurrence of the old identifier), and offer sensible options (pick
one or the other of the new options).

Sometimes U and A differ slightly from the semantics used during execution, which might
reflect a limitation in the refactoring tool being used, or a choice by the programmer to somewhat
actually modify the execution semantics or the program while preserving some of its other
aspects.

It is often useful to alternate modifications to a program that provably preserve its semantics
and mofifications that don’t (yet that preserve some other aspects). Ante-programming a first-
class computation can help in both cases.

Note that refactoring is usually done at compile-time by an ante-program, but that the same
principle can be used at runtime by a controlling hypo-program; the corresponding phenomenon
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is then migration, which we will study in detail in next chapter.

5.3.4 Developing

The above semantic tower was all about exploring the semantics of the program as it exists,
i.e. was lies below A. But of course, we could instead explore the semantics of the program as
it should be, i.e. was lies above A. Here is a diagram to illustrate what we might find:

⊤

R D

A A′

S S′

At the bottom of the semantic tower, you have the current computation in source code form
S. What it does is embodied in an abstract computation A above it. The goal is to find another
source program S′, corresponding to an abstraction computation A′, that itself is included in a
larget set of computations D, that the D stands for “DWIM”, or “Do What I Mean”: programs
that solve the programmer’s problems.

For that, the programmer can hopefully rely on the space R of programs that can be auto-
matically obtained by algorithmic “refactoring”. R represents what is easy to achieve incremen-
tally; it includes importing libraries of existing functions, refactoring strategies provided by an
Integrated Development Environment, and any tricks made possible by the editor, made easier
or harder by the language syntax, and by any available combination of parsers, processors and
pretty-printers.

Ideally, the intersection between R and D would not be empty, and the computer system
may help semi-automatically find a solution. But this need not be the case, and the programmer
may just have to manually write a lot of code. From a semantic preservation stand point, the
only semantics preserved are the fact of being in the space of all source programs possible, i.e.
the top category ⊤, as represented on the top the diagram: it’s the terminal category, a trivial
category with one node and one arrow; all programs are mapped to that same node, and thus
are seen as equivalent inasmuch as they all equally implement that same most abstract of nodes.
Any source program goes.

But in the end, the programmer is responsible for determining what programs are acceptable
and describing those criteria in a way that is constructive enough for the computer to synthesize
such a program from the given specifications. And that’s D.

When writing a new program“from scratch”, then S is initially the empty program — Ehud
Shapiro indeed formalized the idea of synthesizing programs as debugging the empty program
[23]. But when developing a program, at most points, S is a previous iteration of the program
and S′ the next, where D itself is approximated in a series of iterations each times with more
features and (hopefully) fewer bugs.

Dynamic Software Upgrade (DSU) XXXX
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Chapter 6

Migration

6.1 Achieving Migration

6.1.1 Intent

The main innovation of our protocol for using first-class implementations was runtime evaluative
reflection, the non-trivial part of which is the simulate functions (both on nodes and on arrows).
Now what good is a simulation of a concrete computation state for? Most obviously, interpreting
it up into an abstract computation state. And what good is an abstract computation state for?
Most obviously, implementing it down into a concrete computation state. Of course if it’s being
implemented back the very same way, nothing was changed, nothing was gained, and it’s just
a waste of effort. However, the implementation going down can be different from the inverse of
the interpretation going up, at which point a very useful application is achieved: Migration.

Migration is the change of a program’s underlying implementation while it’s running. In
systems lacking either runtime evaluative reflection (simulate) or compile-time abstractive
reflection (observe), migration is considered an impressive stunt: a metaphor often used is
that it is akin to changing a car’s engine and wheels while it’s going full speed on the highway.
But on systems that do possess these two kinds of reflection, migration as such is logically
trivial. Of course, making migration efficient can be a lot of work; but not more so than
making any software efficient.

In this and subsequent sections, we’ll discuss Migration from the point of view of a reflec-
tive system, and contrast it with particular applications of Migration that are traditionally
implemented without using general reflective mechanisms.

6.1.2 Migration Formally

Migration can be represented with the following diagram, in which an abstract computation A
is initially implemented by a concrete computation C, but while it is running, C is interrupted
and is replaced by a different (presumably more suitable) concrete implementation K:

a a′′

c c′ c′′ k k′

A

C

Φ

C

Φ

K

Ψ
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The computation starts in abstract state a in A, implemented by concrete state c in C.
The concrete computation C is run, and interrupted while in state c′. Observability is then
used to stabilize the concrete computation to an observable state c′′, that can be interpreted
as the abstract state a′′. Then this state a′′ can be implemented with the state k of a different
implementation K, and K is run until it finishes or is interrupted.

Note that this diagram is just the same as Observability for the implementation Φ−1 of A
with C, followed by Totality for the implementation Ψ−1 of A with K (at least, restricted to
the domain of Φ−1), followed by running the implementation K:

&migrate : ∀ {A C K : Computation} {Φ : Implementation A C}

{Ψ : Implementation A K} C.Node 99K K.Node

&migrate = Ψ.&run ◦ Ψ.&implement-• ◦ Φ.&interpret.• ◦ Φ.&observe.•

6.1.3 Comparison with ad hoc Migration

The key step that most existing systems seem to be missing is the use of Observability. Without
Observability, migration is altogether impossible.

Now, many systems do implement some kind of migration at a fixed abstraction level; for
that they reinvent an ad-hoc form of Observability, just for that level of abstraction — typically
one very low-level virtual machine (such as 370, x86, JVM or .NET), Then, their main problem
is that, not having a general framework to think about runtime semantics, they cannot automate
very little of the development and verification for semantics-preserving ante-programs; they have
to fight very hard to ensure that their migration doesn’t corrupt the meaning of programs in
some subtle way. And at the end of all their efforts, they implemented just on kind of migration
at one single level of abstraction between a small fixed set of implementations.

By contrast, using a general framework for reflection, it becomes clear what the contract is,
and how it can be factored into many simpler composable layers. Formal verification becomes
possible, and Migration can be implemented in a way that is correct by construction, whether
the logical verification is fully automated, just partially assisted by a type system rejecting large
classes of errors, or left informal in terms of manual code organization. And the result of the
effort is generally usable beyond a single use-case.

6.1.4 Example: Migrating Processes between Machines

An obvious example of migration would be to migrate running processes from one machine to
another. In traditional systems without a reflective protocol, this would be extremely expensive:
with proper hardware and software virtualization, and with heroic efforts, a snapshot of the
machine at a very low-level might be taken and moved to run in another identical machine.
In a reflective system using our protocol, migration would come for free, without any special
hardware support, or additional software trickery: the abstract state of the computation can be
recovered at any time to be migrated to a different underlying machine, and that machine not
only doesn’t have to be identical, but can sport a completely different kind of processor (e.g.
ARM vs x86 vs a GreenArray processor vs ad hoc FPGA or something completely different).

Whereas a traditional system could always emulate one processor with another, this would
come at a steep price, and every successive migration to a different processor would incur a large
slowdown factor, making the scheme wholly impractical. By contrast, a reflective system can
always use all the best known compilation techniques to implement the abstract computation
specified by the user in the most efficient way for the target computer (as far as can be known).
Indeed, migration might consist solely in updating an existing computation to use a newly
released compiler with an improved set of optimizations (or try it out, and revert if there was
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no improvement, or try out many different combinations of flags, and see which work best, all
automatically).

Of course, with a some special purpose case of Observability, a traditional system could
decide on one processor as “the” reference virtual processor (e.g. IBM 370) then make sure
that whatever real processor emulates it, it’s always possible to recover the “abstract” state
of the computation at the level of abstraction of a reference processor. Thus, there would be
no compounding of slowdown factors at each migration; instead each target processor would
have one slowdown or speedup factor with respect to the reference architecture (that would
also vary with the application depending on which architectural features it most uses). But
then, what was achieved in these traditional virtual machine systems is a particular subset of
our reflection protocol, albeit one limited to a particular low-level processor architecture as
being “the”“abstract” computation that the system cares about, with no reflective support for
computations at higher (or lower) levels of abstraction, at the cost of an expensive mainframe
architecture (and accompanying software licenses). Reflection offers the promise of all the
benefits of virtual architectures, and much more, at whichever level of abstraction users actually
care about, without the cost of expensive hardware architectures and accompanying software.

6.2 Making Migration Efficient

6.2.1 Optimizing the Abstract away

Migration may be logically trivial to achieve with the above formula, but a naive direct im-
plementation thereof would be particularly slow: indeed, it concept involves reifying the entire
state of the application, then processing that entire state include all runtime data to interpret
it into a more abstract representation, then processing that to recompile it back into a new
concrete representation, that is then executed. On an application that processes mega-, giga-,
peta- or exa- bytes of data, a direct application of this recipe, that eagerly computes of each
of these steps on a sequential machine (what more multiple times, for each intermediate layer
of representation) cannot possibly be quick, much less instantaneous. Maybe the framework
will ensure correctness by construction, and the application itself can never notices that its
implementation has changed underneath; but the user will notice that the application is frozen
for seconds, minutes, days, years, while the data is being processed.

However, if the above formula is seen as a logical specification, the implementation of which
is subject to optimization, then it can indeed be used as the template to generate migration
procedures that are correct by construction. The many steps can to be merged, the intermediate
representations as e.g. syntax trees can be deforested away[27], remaining virtually conceptu-
alized, but never actually realized. The diagram for optimized migration is as follows: where
migration is represented as the squiggly association arrow from c′′ to k by M :

a a′′

c c′ c′′ k k′

A

C

Φ

C M

Φ

K

Ψ

That arrow is an association arrow, as indicated by its vertical bar at the beginning (as in
7→). The arrow is also squiggly, indicating thatM is not just partial but also non-deterministic.
Indeed, M = Ψ−1 ◦Φ, and while interpretation Φ from C to A is a (deterministic, but partial)
function, Ψ−1 on the other hand, as the inverse of a function that is not (known to be) injective,
is non-deterministic: there may be many ways to implement a node or arrow in A with one in
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K that are consistent with inversing the partial application Ψ. association of one element to
another by a function, rather relation of one set to another by a function.

For instance, the initial concrete computation C might consist in interpreting some function
as bytecode; noticing that the function is taking time (by profiling the time spent in it, or
watching some progress counter), the system might decide to compile that function to native
code, (and if that function is still a time sink, it might further spend more time optimizing
it). The system with a new function implementation with constitute a concrete computation
K, and the transition from C to K is predicated on this transformation not having modified
the operational semantics of the program at the level of abstract syntax tree at which the
evaluation contract is defined. But that doesn’t mean a representation of the program at
said abstract level will be generated (then dropped after it is re-compiled); that only means
that the logical consistency of the underlying representation with this conceptual contractual
level is maintained at all times. Thus, the optimizing runtime monitor, considered as an outside
program that modifies the implementation of the program being run, can change the underlying
implementation in an incremental, local, way.

6.2.2 Grounded Migration

Some people may object to the above diagrams, or at least find them distasteful or disconcerting,
because they display arrows in different categories C and K at the “same” level. What more,
the latter diagram also mixes at the same level not a arrow, morphism or function, but an
association between nodes of two different categories:

How can that be reconciled with the desire of having at the same level entities of the same
nature? The following diagram explains how:

a a′′

c c′ c′′ k k′

Φ, c Φ, c′ Φ, c′′ Ψ, k Ψ, k′

A

C

Φ

C M

Φ

K

Ψ

H

Θ

H

Θ

H

Θ

H

Θ Θ

In this diagram, we consider that “concrete” computations C and K are actually both
implemented on top of the very same hardware, and thus ultimately to the same hardware
implementation; but we can also identify a higher level of abstraction above the hardware yet
below both C and K, and that’s what we’ll call H — a common hypo-computation. We then
consider the “optimizing runtime monitor” as part of the program doing the implementation
rather than a separate program watching it “from above” — indeed, it verily is an essential
part of the hypo-computation H below both C ad K. And the way that H implements both
C and K is by its state being a pair of some concrete state and of some datum specifying how
to interpret the state back into an abstract state: thus c,Φ implements a (through c) and k′,Ψ
implements a′′ (through k). c,Φ and k′,Ψ implement states in different computations C and
K at the intermediate level, yet are states of the same concrete computation H and implement
states of the same abstract computation A. Moreover, the transition from c′′,Φ to k,Ψ indeed
implements the migrationM and is at the same level as the transitions from c to c′ to c′′ or from
k to k′. Indeed, association by a partial and non-deterministic function is of the same nature
as the transition function run (or advance), a process also itself partial and non-deterministic.
Therefore, those who find the mixing of heterogeneous entities objectionable may simply factor
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out the problematic level and write the following simplified diagram (but they are missing out
on the fun and on useful insight):

a a′′

Φ, c Φ, c′ Φ, c′′ Ψ, k Ψ, k′

A

H

Ξ

H H

Ξ

H

Ξ

Actually, once changes of representation are understood as transitions among others at the
same underlying level, then there is no reason why it should be a big and catastrophic event
rather than a small incremental change. At the level of H, some changes might slightly modify
the state, whereas other changes might slightly modify the representation.

6.2.3 Example: Garbage Collection

A case at hand is incremental garbage collection (GC)[citation needed]: consider an abstract com-
putation the state of which includes a directed graph of objects pointing at each other; consider
a slightly more concrete computation where each object is labelled with an address in memory,
and additional, “dead” objects may exist, unreachable from those in the abstract graph. A
moving garbage collection is a relabelling the object graph, that eliminates unreachable objects
by marking them with a special “color” (e.g. black) to indicate they are dead (at which point
they don’t have any address in memory anymore, or it’s no longer meaningful), as distinguished
from “white” to indicate they are known to be reachable. A relabelling a graph is a typical
instance of migration, and modelling the correctness criteria of a moving garbage collector can
thus be expressed as a particular case of migration, reusing the same conceptual model (and,
hopefully, proof tools).1

An incremental moving garbage collector modifies the representation in a way interleaved
with computation by the mutator (i.e. the rest of the program, that actually implements the
abstract computation). One class of moving garbage collection algorithms may break down
“white” objects into three distinct colors red, green and blue: at the beginning of a garbage
collection cycle, all objects are marked red, indicating their reachability status is under question
— except the roots of the collection, that start green (and, if they are fast-changing registers,
may remain forever so). when the tracing garbage collector reaches an object, or the mutator
(i.e. the rest of the program) modifies it, it is changed to color green and it is added to a
green queue; the tracing garbage collector visits objects in the green queue, ensures that all the
objects they point to are either green or blue, then turns them blue. When the green queue is
empty, the cycle is complete: all objects that are still red are turned black and their memory
is recycled since they were provably not reachable; then all blue objects are turned red, and a
new cycle is started. The work of the garbage collector as well as that of the mutator are on

1As an anecdote for how it is not an abuse to identify Garbage Collection as Migration, in a speech at
SPLASH 2010 in Reno, hackers from Linden Lab explained how in Second Life, migrating a script from one
server to another server (or to a restarted version of the server) was achieved by reifying (simulating) the script
state (using an exception handler to catch and process reification events in each lexical scope), shipping the
reified data and reflecting (performing) it back in the new server. They also explained that the very same
technique was how the garbage collection of unused memory happened for said scripts: by reifying and reflecting
the script state as you migrate it from a server to another server or the very same.
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the same level; the mutator advances the abstract computation, whereas the garbage collector
advances the incremental migration that is each cycle.

Of course, note that the address annotations and color annotations are largely independent.
There are many ways to encode and organize objects in memory even given the previous anno-
tations. Therefore, there is there again the opportunity for many different implementations of
what at a higher level of abstraction is the “same” algorithm. And there is the opportunity for
migrating from one of these implementations to the next — at runtime.

Ensuring Observability at the abstract level of the object graph is a common problem
for programming language implementors writing garbage collectors: whenever an interrupt
happens, or a debugger tries to inspect the graph, or a concurrent process wants to access some
shared data, or the garbage collector attempts some change how that data is represented, it
is important that the program should be synchronized to a “safe point” where computation
is observable, at the garbage collection invariants are preserved. GC implementors possess a
large collection of tricks, including read barriers, write barriers, memory transactions, locks,
and ensuring that you can always roll back from inside critical sections or forward out of them,
etc. All these tricks can be viewed in terms of Observability, and most of them can be reused
when implementing Observability in a wider context.

6.3 Uses of Migration

6.3.1 Recasting Things as Migration

Once you have a general enough understanding of what constitutes Migration, i.e. a change
of implementation strategy at runtime, then a whole lot of computing activities commonly
occurring in computers or discussed in computer science start to look like particular cases of
Migration.

Process Migration

In the case of distributed system, migration of mobile activities from one host to another, on a
same or different architecture. The migrated activities can scale from a single process jumping
moving between a handheld device and a desktop computer, to an large set of coordinated
servers moving between data centers on different continents.

Garbage Collection

Tracing garbage collection can be viewed as migrating the heap from an old space full of garbage
to a new fresh space.

Zero Copy Routing

Large amounts of data can be routed from one process to the next by changing the conceptual
ownership of the data pages without copying any data, maybe even without touching mapping
tables; at an abstract level the data may have moved, but the actual implementation can be
extremely efficient.

Dynamic Configuration

While the program is running, its environment can be change, its inputs and outputs can be
reconnected: its “environment variables”, the (graphical or text) terminal it’s connected to,
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the sound devices it uses, the network connections to various servers, the logging or debugging
settings it uses, many user preferences, etc. — they can all change without the program
noticing, having to notice, or even being able to notice, because they are handled wholly by
hypo-programs, and a change is just migration from one hypo-program to another.

JIT Compilation

With a Just-In-Time Compiler (JIT), a same function can be implemented differently at different
times: in the beginning, it is implemented using a bytecode interpreter; if it keeps getting called,
soon the JIT compiler will replace it by some quickly generated native code; and if the dynamic
profiler reveals that a lot of time is spent in the function, then that code will in turn be replaced
by some aggressively optimized native code. That’s migration.

Dynamic type-directed compilation

A dynamic JIT can select completely different representations for general data types, depend-
ing on the actually observed access patterns and the actually observed types of various data
elements. This can be seen as migrating code from some inefficient or invalidated setting to a
new setting that allows speedier or type-correct setting[citation needed].

Database schema upgrade

The data migrates from an old representation to a new extended (or restricted) one. Also file
format upgrade, etc.

Software version upgrade

The entire fleet of servers are upgraded to a new version of the software; this can be seen as
migration of the service architecture from one implementation to the next — assuming you
have a high-level enough view of the program that allows for large incompatible changes in
computational behavior to keep satisfying customer need (and satisfy it better).

Refactoring

Similarly, code refactoring, whether statically before it’s running, or dynamically while a pro-
gram is running, and change in data representation and upgrade of virtual machine code can
likewise be seen as change in implementation.

6.3.2 A Fruitful Change in Perspective

Even when we’re considering but existing applications, and without imagining any kind of
“migration” that has never been implemented before, there is are many advantages in view
these existing applications from the perspective of Migration.

Correctness

The Migration perspective provides a semantic framework based on which it becomes possible
to ensure correctness by construction, whether formally or informally, despite an exponential
number of configuration combinations.
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Dynamism

The Migration perspective makes it possible at runtime to adapt software to relevant changes,
without losing any session data, without interrupting fragile interactions or expensive connec-
tions, etc.

Retroactivity

Migration makes it possible to apply and combine these many different techniques after the
fact. Traditional systems demand that developers should specially add support for migration in
programs they write, and/or that users should configure configure the execution environment
before the program is started, to enable a few specific enumerated kinds of migration. Reflective
systems allow migration to be defined and to happen after the program is started, even if the
program wasn’t specifically written with that kind of migration in mind.

Composability

A general framework for migration makes it possible to mix and match and compose several
features developed separately, when traditional systems can only migrate according to fixed
combinations of features developed together. For instance, a general approach to migration
will allow one to move some arbitrary computation from a laptop to a desktop while keeping
its video output to the laptop but redirecting the sound output to some loudspeakers on yet
another machine; it might also change its garbage collection algorithm to a real-time algorithm
to support music generation (which affects memory representation and code generation), all the
while the program keeps running. An ad hoc approach to migration might typically allow one
of these changes, at most.

Predictable Cost-Reduction

It is entirely predictable that any successful software will have to be migrated: data centers will
become obsolete, overly expensive, go bankrupt, have accidents; data schemas will have to be
upgraded eventually to match a reality that changes in predictably unpredictable ways; users
will switch from one device to the next, they will want to share with friends on a big screen
videos, music or games that they were previously consuming alone on a small screen; etc. Yet
most traditional systems (with exceptions like Erlang[2]) make it extremely hard to retrofit any
kind of migration onto computations that weren’t specifically designed to be migrated, and thus
force enormous future costs on all successful software.

6.4 Managing Migration

6.4.1 Transparent Migration

But in a reflective system, just like in traditional systems, most migration is managed auto-
matically without the user having to explicitly control it: whether memory is migrated from
one garbage-collection color to another, or a process is migrated from one server to another, or
a function is migrated from one implementation to another, this is usually transparent to the
user. Sometimes the migration is directly caused by a user request, such as a user deciding to
disconnect his phone from his laptop, his laptop from his desktop, or his desktop from some
server. But user requests are only a small fraction of the changes in the environment that a
system usually takes into account when deciding what to migrate where and when.
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Transparent migration can be illustrated with the following tower diagram:

A

U

V

M M ′

C C ′

H

Gap

Φ

The user specifies an abstract computation A, whether via some source code S or otherwise
via a series of interactions. Since the computer cannot directly express A, the user actually
specifies the computer-understandable computation U that implements A (with a semantic
Gap), that he cares to interact with. The level of abstraction of U is also specified, implicitly
or explicitly, via the user’s interactions.

Along the tower of implementation that implements A onto the hardware H via U , an inter-
mediate abstraction level V offers some kind of virtual machine. In the tower of implementation
layers between V and H, at some point in time are the levels M and C (the letters stand for
middle and concrete; in practice there may be any number of implementation layers in there).
Then some meta-object decides to adapt to some change in the environment, and migrate the
implementation from M and C to alternate levels M ′ and C ′ (there again in practice, it could
be any new number or new implementation layers). The user doesn’t see any change, because
the system has maintained the semantics of U : the overall implementation Φ of U with H

is unchanged. Actually the system even maintained the semantics of V underneath U . But
unbeknownst to him, the implementation was changed beneath his feet.

Migration is transparent to the user.

6.4.2 Implementation Meta-Objects

The above paragraphs suggest the existence of entities we called the implementation meta-
objects: computations that control the implementation of other computations: the garbage
collector, the process scheduler, the JIT compiler, etc.

When considered as internal to the computation specified by the user, these implementation
meta-objects appear as details added in hypo-computations, as part of the kernel or monitor
that controls the low-level computation and selects between implementations of the high-level
computation.

When considered as external to the computation specified by the user, they are recognized
as entities that are interesting in their own right, as ante-computations that manage the imple-
mentation of the computation as a post-computation.

Then, it appears that some users may specify some computations, and that the same or other
users can independently specify implementation meta-objects or strategies that will control the
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implementation of the former computations. The constraint that said strategies shall correctly
implement the semantics of the user-provided computation may or may not be automatically
enforced.

Most existing systems are not capable of expressing the constraint, much less enforcing
it. They mostly do not even try, because the cost of developing proven-correct programs is
considered prohibitive compared to the value at risk in most applications should correctness
be found lacking. But as software applications scale to ever more valuable activities and sizes,
with ever increased catastrophic risk from failure of their small shared core, the fixed cost of
proving at least this core correct will soon be overwhelmed by the cost of leaving it at risk.

In any case, the notion of managing migration naturally leads to the question of an archi-
tecture to organize these implementation meta-objects. See part IV, Architectural Implications
of First-Class Implementations.
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Natural Transformations of
Implementations

7.1 Automatable Transformations

7.1.1 Code Instrumentation

Many common tools used by developers in refining their programs rely on some kind of code
instrumentation, whereby additional instructions are systematically inserted by the compiler
to achieve certain effects, typically to give the user more visibility or more control over the
execution of a computation: tracing, logging, filtering or intercepting some events such as
function calls, trapping when some situation is detected, single-stepping through the execution,
profiling the performance of various code paths, accumulating usage statistics based on which
to drive future (automated or manual) optimizations, computing code coverage of various test
suites, etc.

Unhappily, each of these tools only ever works at a single level of abstraction, usually for
one general purpose programming language that the tools authors cared to painfully implement
the instrumentation for. To be general purpose enough as to make the instrumentation effort
worthwhile, said level of abstraction ends usually up being several layers of abstractions below
what end-users actually care about. For instance, if the computations that one cares about are
written in some “configuration language” itself implemented by an interpreter written in C++,
then all the wonderful profiling tools available for C++ won’t help the user find out which part
of his “configuration” is abnormally slow, only which parts of the interpreter are most used
while running it — which does provide a hint indeed, but a flimsy one, compared to the profiler
could tell if the program were written directly in C++. Conversely, if the phenomenon being
studied happens below the level of abstraction provided by the instrumentation (say, a bug in
the compiler, the kernel, or the processor itself), then the instrumentation is also much less
useful than if it happens at the designed level of abstraction, since the tool won’t be able to
express the precise anomaly that is occurring.

In either case, all these instrumentations are tied to one level of abstraction, and not very
usable if at all to help address software issues at a different level. Since most issues are at a
different level, the return on investment of the existing tools is low, and equivalent tools are
sorely missed at most levels of abstraction that users care about. Some developers may try to
force development to happen in a language that is fully supported by instrumentation tools, but
then may face complexity explosion, robustness issues, security issues, etc., as said language is
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a mismatch to the task at hand in terms of expressiveness.

7.1.2 Abstracting Instrumentation

Now, if you consider implementations as first-class entities, it becomes possible to automate,
generalize and compose code instrumentation, and make it usable at whichever level of ab-
straction a developer is interested in. The many known techniques that people traditionally
implement the hard way in a few special cases, that usually can’t be combined; with first-
class implementations, these techniques become general purpose; they are readily available at
whichever level of abstraction developers need them; they can be composed, their inputs can be
the result of composition, and their outputs can partake in compositions, etc. One instrumen-
tation technique can be implemented once or twice, and become available to any program in
any language. Our theory of implementation makes it possible to commoditize instrumentation
practices that would otherwise remain artisanal.

The key is first to understand an instrumentation as a Natural Transformation of an im-
plementation into a modified implementation (with a twist explained below), and second to
abstract away the specific implementations on which a transformation operates and make them
parameters of a generalized instrumentation technique. Thus, instead of being able to trace or
profile function calls in C++, you’ll be able to trace or profile function call in any language at
any abstraction level of your development environment for which you can describe some piece
of the operational semantics as calling a function or returning from it.

7.1.3 Natural Transformations

In category theory, if φ and ψ are functors between the categories A and C, then a natural
transformation η from φ to ψ is a family of morphisms that satisfy two requirements. The
natural transformation must associate to every object a in A a morphism ηa : φ(a)ßψ(a) between
objects of C. The morphism ηa is called the component of η at a. Components must be such
that for every morphism f : aßa′ in A we have:

ηa′ ◦ φ(f) = ψ(f) ◦ ηa

The notion has to be generalized a little bit to apply to implementations, that are inverse
of partial functors (that in category theory can be viewed as spans or as profunctors). Let Φ−1

and Ψ−1 be implementations of A with C, then a natural transformation η from Φ−1 to Ψ−1

is a family of arrows that satisfy two requirements. The natural transformation must associate
to every abstract node a in A a morphism ηa : Φ−1(a)ßΨ−1(a) between objects of C. Or more
precisely, since Φ−1 is non-deterministic, for every c such that Φ(c) = a, there exists d in C

such that Ψ(d) = a (we write d = ηa,c(c)), and there is a ηa,c : cßd, the component of η at a, c.1

Components must be such that for every arrow f : aßa′ in A, we have:

ηa′ ◦ Φ
−1(f) ⊆ Ψ−1(f) ◦ ηa

1Note how the quantifier for d is existential and not universal. Indeed, if Φ adds some state constraining
arrows such that the state of the domain must be prefix to the state of the codomain (i.e. there is a functor
from C to that state category), amd if Ψ similarly adds another state that may or may not be orthogonal to
that of Φ, then η clearly cannot map arbitrary pairs c, c′ to arbitrary pairs d, d′: c′ can only be reached from
c if it has compatible Φ-state, d′ can only be reached from d if it has compatible Ψ-state, d only makes sense
from c if their Φ- and Ψ- states are compatible, and d′ only makes sense from c′ if their Φ- and Ψ- states are
compatible.

Also note how this existential quantifier means that Ψ is defined wherever Φ is defined, and that underlying it is
a function. We could weaken that by defining“partial natural transformations”, or“natural pro-transformations”,
where the transformation is a partial functor or a profunctor, instead of a functor.
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More precisely if g : cßc′ and Φ(g) = f there exists h : dßd′ with Ψ(h) = f , such that
d = ηa,c(c)), d

′ = ηa′,c′(c
′), and ηa′,c′ ◦ g = h ◦ ηa,c. The transformation is surjective if the

converse condition holds, that if h : dßd′ and Ψ(h) = f there exists g : cßc′ with Φ(g) = f , such
that d = ηa,c(c)), d

′ = ηa′,c′(c
′), and ηa′,c′ ◦ g = h ◦ ηa,c.

The component of η at a, c represents the removing the effects that Φ−1 has that Ψ−1 doesn’t
have, and adding the effects that Ψ−1 has that Φ−1 doesn’t have. However, in the case of total
deterministic natural transformations (the classic notion from category theory), any adding of
effect must be trivial (cannot add information), whereas removal of effects can be significant
(can, uniformly, lose information). Thus we find that once again, the instrumentations that we
are interested in go against the functorial flow, and are actually the dual of natural transforma-
tions. Said otherwise, a code instrumentation usually isn’t a natural transformation, but the
forgetful functor that erases a code instrumentation is.

Also note that remarkably, these dual of natural transformations are between implemen-
tations, with are dual of interpretation (partial) functors: indeed in all our implementation
properties, we previously emphasized how it was the inverse of an implementation that was
functorial, and as far as specifying correctness goes, we mostly followed the interpretation ar-
rows “up” from concrete to abstract; but with these natural transformations, we actually follow
the implementation arrows “down” from abstract to concrete then apply the inverse of a natural
transformation between two such downward implementation profunctors. Thus in the “cone”
a, c, d the common origin is the abstract node a and the two distinct images are the concrete
nodes c and d (via distinct implementations). The instrumentation is the inverse of the natural
transformation, because it is “natural” (in a category theory sense) to lose the information from
the instrumentation and retrieve the uninstrumented program; but it is not (usually) natural
to add that information.

A trivial example would be to consider a system with one node and an infinite loop, and
an instrumentation that counts the number of times the system went through the loop. If the
count is part of the concrete state, then the instrumented system distinguishes nodes by count;
yet they all map to the same abstract node.

Cite Conor McBride’s 2010 paper on Ornaments or this 2013 follow-up: https://arxiv.org/pdf/1212.3806.pdf

7.1.4 Instrumentation vs Aspect Oriented Programming

Note the relationship between Instrumentation and Aspect-Oriented Programming (5.3.1): the
“events” that may be traced or logged or otherwise instrumented are called “join-points” in
Aspect-Oriented Programming; in both cases they are typically function calls, but may be
arbitrary points during the evaluation, as long as the developer can somehow recognize and
define them as such. The developer can then specify a set of join-points, called a pointcut
in AOP parlance, at which some code, called an advice, will be run before, after, around or
instead of the code normally run at the join-point (though hopefully preserving the high-level
invariants of the code as specified by the developer, whatever they may be).

The difference is that AOP is usually used somewhat more statically to define the program
that is to run, at which point there is more freedom for the advice to override or modify the
behavior of the original program in ways that do not fully preserve its semantics, but transform it
into something better suited to the developer’s needs. By contrast, the kind of tracing, logging,
and other forms of instrumentation that are used outside of AOP typically are configured in a
more dynamic way, and do not interfere with the semantics of the non-instrumented program
in any substantial way. Yet, in the end, it is the same set of techniques, just viewed from a
different angle and applied at a slightly different time by different people within slightly different
constraints.
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7.2 Common Transformations

7.2.1 Tracing and Logging

Tracing and logging are instrumentation techniques whereby some “events” are recognized,
either nodes or arrows in the operational semantics, upon which the instrumentation adds
additional code that displays a summary of the event to the developer, or stores it in a log file
for further analysis. An event is typically a function being called with some arguments, or the
same function returning a value to its caller; but an event can also be a variable being modified,
some system call being issued or returned from, or special I/O action taking place, etc.

Tracing is often used while debugging a computation, to determine whether the control flows
as intended or fails to, and if so at which precise point it fails. Logging is often used to audit
the performance or security of running services, or to obtain a baseline to which to compare
the evolution of the program and of its test runs.

Now, a good interactive development platform will let you enable and disable tracing for in-
dividual functions, maybe even allowing the tracer to inspect the event data whenever deciding
whether to log it or not, and which details to include or not in the trace. All the interacting de-
veloper has to do is name some functions; then any function call event involving these functions
will be traced; or will cease to be when the developer decides not to trace them anymore.

In the case of logging, the developer explicitly defines the events in the source code; however
the logging infrastructure can typically be configured independently from the program and often
dynamically; it can then decide where to route the log messages, depending its own criteria,
based on their content and on various annotations provided by the developer, that detailing
their degree of seriousness, confidentiality, etc.

Now, whether events are displayed to the user or saved in a file, if you consider that tracing
and logging are sending output to a channel invisible to the computation’s abstract semantics,
then the addition or substraction of this output trivially preserves said abstract semantics.
Adding the tracing or logging of various functions is a Natural Transformation that adds these
systematic effects; removing the tracing or logging of the same functions is another Natural
Transformation, a Forgetful Natural Transformation, that removes these effects (as if redirecting
the invisible channel to the bit bucket).

7.2.2 Single-Stepper

A single-stepper instruments a computation so it will stop before every step, and wait for
the human operator (or a controlling program) to tell it to continue processing. Some single-
steppers rely on hardware support to do the stepping itself; other steppers do it all in software.
If tracing adds outputs, single-stepping adds inputs: between every two consecutive steps of
computation there will now be a wait on external input.

A single-stepper allows a human to inspect the state of the computation and visualize its
progress, either to learn the proper behavior of a working computation, or to understand a
debug a buggy computation. Single-stepping may also be a preliminary transformation that
later enables further transformations to e.g. simulate state changes between every consecutive
steps, keep running until the very first time some condition is met, synchronize two slightly
out-of-synch copies of a computation, etc.

Of course, there may be infinitely many interesting notions for what “a step” is. One view
may see the evaluation of some function as a single step, whereas another view might see it as
decomposed into millions of steps.

Given any implementation with a Strong Step Preservation property (see 3.2.3), there is
a simple Natural Transformation from the initial implementation to one that requests input
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between every step, on a channel that is invisible to the abstract program. And given the single-
stepping implementation listening to such a channel, we can retrieve the original implementation
with a forgetful Natural Transformation where the invisible channel is bound to an ever-ready
channel that always requests the continuation of the computation.

7.2.3 Omniscient Debugging

Once the computation has been divided in steps, it is possible to record at every step the changes
in the state of the computation. And it becomes possible to keep a relatively compact, indexed
representation of all these changes, that one can search and query according to various criteria
such as: When was some variable bound to some unacceptable value, and what were the other
variables in scope bound to at that time, and the intermediate values and continuations from
surrounding expressions being computed? Through what chain of intermediate transfers was
one value transfered from one place to another where it shouldn’t have landed? What if you
replay from one point with this change in variable bindings, or that change in code? What if
you undo or redo smaller parts of the computation until you pinpoint what exactly went wrong
and where?

Debugging based on such a complete model of all the steps during a computation is called
Omniscient Debugging, also known as Time-Travel Debugging or Reverse Debugging.

There is another natural transformation from an implementation that preserves steps to
one that can record and index the computation at every step. And this transformation can be
abstracted given a description of an abstract computation, a model of the space of computation
state and how to index or query it, and a specification of how each step affects the model. Then,
instead of having Omniscient Debugging just for the low-level virtual machine several levels of
abstraction below one’s application, one could achieve it a exactly the level of abstraction that
one cares for.

7.2.4 Profiling

Instead of tracking every single change in the state of the computation, it is cheaper and
sometimes sufficient to track only a synthetic summary thereof: how much memory was used,
how much cpu time was spent, how many blocks were read from disk, how many packets were
sent or received on the network, what operating capabilities were used, how well various caches
behaved, how many errors of each kind were caught, etc. When this resource accounting is
correlated to which parts of the code or data caused the resources to be consumed, it yields
profiling information. Profiling can be crucial to detect and address performance bugs and
security issues, to direct the developer’s focus to parts of the system with the most urgent
issues, or to forecast the usage of some resources and provision them accordingly.

There too, the collection of Profiling information, being a reduction of the information col-
lected via Omniscient Debugging, can be viewed as a natural transformation of implementation
from one that doesn’t collection information to one that does — or once again, back, via a
forgetful transformation that drops the collected information. This means that you can auto-
matically extract a useful profiling tool applicable to an arbitrary DSL for which you possess
an implementation with a suitably declarative description. And there again, the logical spec-
ification of the profiling tool, that can be made correct by construction, can yield an efficient
implementation of the tool, using a suitably declarative programming language, with a com-
piler capable of deforestation of intermediate representations: specify the reduction in terms of
the richer Omniscient representation, but compute and collect only the much cheaper reduced
representation.
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7.2.5 Code and Data Coverage

When the reduced information that you profile and index is about which pieces of code (re-
spectively data) were used during a collection of (test or actual) runs, what you have is code
(respectively data) Coverage. Coverage is usually profiled systematically using a single-bit
count, or indexing for each piece of code (respectively data) covered some summary of the
context in which it was used; but it could also be profiled statistically using approximated
frequencies.

Given a code base, coverage allows you to improve your tests, to make sure your code is
well-tested and will not experience regressions. Given a set of tests, Coverage allows you to
safely remove dead code (resp. data), which can simplify your codebase and enable refactorings
formerly blocked by the dead code (resp. data). Given some actual usage data, coverage
allows you to determine how you can modify your application to better suit user demand, by
simplifying away overly complex parts of the code, or elaborating overly undevelopped parts.

Constructing coverage tools in a declarative way makes it possible for any program in any
language to benefit from coverage, at whichever level of abstraction developers care about.

7.2.6 Access Control

A different kind of instrumentation consists in filtering certain subcomputations such as system
calls, input/output, access to certain variables, reduction of certain terms, etc., to ascertain
that the computation is authorized to run those subcomputations, that it possesses proper
access rights, credentials or capabilities, that it isn’t trying to use a forbidden or dangerous
combination of parameters, etc. In the context of this Access Control, system calls are not
limited to calls into “the” operating system kernel, but can be an arbitrary interface between a
“user” space and a “system” space, as delimited by the developer to distinguish between what is
under the control of an relatively untrusted user, and what is fully under control of the“system”.

As usual, writing one set of access control tools once makes them available at all levels of
abstraction. However, in the case of security, any savings in terms of engineering resources pale
before the ability of describing and automatically enforcing security properties at the suitable
level of abstraction for each program: having the enforcement focus at the wrong level, or
having to manually translate the enforcement between two levels of abstraction (and what
more manually maintaining it as the code evolves) pretty much guarantees that the software
will be subverted.

7.2.7 Concurrency Control

Parallelizing a computation written in an otherwise sequential language based on declared or
inferred dependencies between subcomputations, or serializing a computation written in a con-
current language to achieve a deterministic result can both be seen as Natural Transformations
that preserve the more abstract semantics of the computation. By specifying computational
semantics that are compatible with the considered reordering of subcomputations, programmers
can thus decouple the overall meaning of the computation from the evaluation strategy that
may be used to compute it, depending on the situation.

A software debugger, a hardware FPGA or ASIC, a multicore computation by a trusting
developer, a single-threaded evaluation by an untrusting server, a massively distributed com-
putation in a private farm, an interactive demonstration in a browser, etc.: They each provide
a different context in which the very same computation can be implemented with very different
characteristics with respect to concurrency as well as other settings.
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There exist many tools to automate concurrency control of some or some other specific
language, often specially crafted for the purpose. These tools could be made more general with
a framework for first-class implementations: by making explicit the dependencies in the flow
of values being computed, and making these dependencies an explicit parameter of the control
tool, the tool is then factored into a general concurrency-handling part that can be reused on
any computation for which the dependencies are specified, which is applicable to a wide variety
of programming languages.

7.2.8 Optimistic Evaluation

Optimistic Evaluation is natural transformation of implementations, whereby speculative frag-
ments of computations are evaluated before some information is known as to whether said
fragments are valid or not. If at some later point it is found that the premise of the fragment
was invalidated, while the fragment is still running or after it has completed, then the inter-
mediate or final results of this fragment are thrown away, and any side-effects by this fragment
are reverted (which in particular means that speculative fragments may not issue irreversible
side-effects).

Optimistic Evaluation can model many things from user interfaces and online games (as-
suming that the behavior local or remote user could be correctly predicted), to in-memory
or persistent transactions (assuming that the current transaction will complete successfully),
to CPU architecture (assuming that branches can be predicted). As usual, by framing these
phenomena as special cases of a common pattern, many strategies can be shared for either
implementing these techniques or proving their correctness properties.

7.2.9 Virtualization

In Virtualization, a universal concrete computation C used as the substrate for a lot of abstract
computations (even “all” of them), itself has an implementation on top of C (or some variant
C ′), allowing many computations to run concurrently, and to interact while instrumented in
arbitrary ways. Moreover, the transformation from a computation A running “directly” on C
to a computation running “virtualized” C in the context of some given management software,
is itself a natural transformation (that is, assuming that C ′ = C indeed).

Now, while Virtualization in general allows for arbitrary kinds of instrumentation, specific
virtualization techniques may only make some kinds of instrumentation easy and/or cheap, while
most remain hard and/or prohibitively expensive, even though other virtualization techniques
could enable them. First-class computations are a generalization of virtualization, so that it
may happen at arbitrary levels of abstraction, rather than always at the level of zeros and ones of
an extraordinarily complex yet desperately low level of abstraction of modern microprocessors.
Thus, instrumentation can happen at the level of concepts that the user cares about, rather
than at a lower-level where users have to manually manage the correspondence, with a lot of
work, a lot of additional opportunities for mistakes, and a lot of additional opportunities for
being misled by an adversary. First-class computations therefore make it easier and cheaper to
express the virtualization architectures that users care about.

7.3 Orthogonal Persistence

Orthogonal Persistence can be better supported by a family of transformations opposite natural
transformations. This largely unknown, misunderstood and undervalued concept requires a
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section of its own; only at the end of it can we explain why transformations of first-class
implementations can make Orthogonal Persistence more relevant.

7.3.1 Orthogonality between Persistence and Semantics

Persistence is the property of a computing system in which all data objects (including code)
persist until they are no more needed by the users — neither before, which would make the
system fail, nor after, which would waste (eventually all) the system’s limited resources. Per-
sistence is meaningful in the context of adverse events that are more or less likely to happen:
system shutdown, power loss, hardware failure, theft, tampering by vandals, etc.

Orthogonality means that two aspects are independent from each other — in this case,
the persistence of data, and the evaluation semantics of the code. In other words, users and
programmers who manipulate some data should not usually have to worry about the persistence
of some data, they should only have to care about its structure and meaning, while the system
will implicitly ensure the persistence of all data objects for them. Orthogonal persistence
is when users don’t need to specify anything for all data objects to persist[6]. Users and
programmers might have to explicitly specify or alternate settings for persistence (or, sometimes,
non-persistence), where performance, robustness or confidentiality matters. By default, though,
all data is persisted without any user or programmer intervention.

7.3.2 Two Stories about Orthogonal Persistence

Here are two short stories to illustrate the idea. When my mother first used a computer, she
spent the whole night entering in a database (dBase II) the references of books in her library.
When she got too tired, she shut the computer down and went to sleep. The next day, she turned
her computer back on, and the data had disappeared! She didn’t ”know” she had to explicitly
”save” the data before to quit the application. Well, persistence means that the data would
have been still there despite the quite expected computer shutdown. Orthogonal persistence
means that she wouldn’t have had to care about it.

At about the same time, I had a wonderful battery-backed programmable pocket calculator
(an HP28C), that never lost its data during normal operation; actually it would lose its whole
patiently typed programs when the battery die, or if using the SYSEVAL escape to write buggy
programs in assembly; and there were no means to backup data to tape or to disk to restore
data after it was lost. So that my calculator’s memory was orthogonally persistent against
high-level software bugs, regular power-off events and scheduled battery replacement, but not
against complete battery loss or low-level software bugs — and so it was ultimately unsatisfying.

7.3.3 Orthogonal Persistence as a Natural Expectation

Orthogonal persistence is quite a natural expectation, because this is exactly what people need
when manipulating objects, as what counts to serious people is not (just) the fun they have
during a computer session, but the work they accumulate during successive sessions. Untrained
people, like my mother was, expect data to be persistent, and hope to have to care as little
as possible about keeping it persistent. Indeed, they are not generally qualified to deal with
technical aspects of this persistence when they aren’t orthogonal; and progress, in computer
systems like elsewhere, is in not having to care.

If you’re not convinced in orthogonal persistence being a natural expectation, imagine that
there would be two kinds of papers, one that would persist, the other that would self-destroy
after it’s no more on the top of your desk; you could use the latter for short-lived drafts, but you’d
use the former for anything that has any worth; and even when you’re not writing things that



7.3. ORTHOGONAL PERSISTENCE 121

ought to last, you might be using the persistent paper, just because it might unexpectedly turn
up as more valuable than initially expected, and you don’t want to waste your precious mind
resources at assessing the real shortlivedness of your information, nor at making a copy: your
time is much more precious than the paper. So the only time you use short-lived paper would be
in specific, scheduled events, as part of streamlined business use (for instance, when exchanging
passwords or processing secret self-destruct messages, or when computing intermediate results
destined to be thrown away).

The same should eventually happen with computers: only as part of developing optimized
applications would people ever care about using memory that isn’t orthogonally persistent.

7.3.4 Traditional Manual Persistence

Most traditional computing systems do not support orthogonal persistence at all; instead, users
must manually manage persistence of their data.

Typically, most state will only persist as long as an application is “open”; but to “close” the
application is a regular, frequent, event: the user is expected to do it eventually, and may easily
do it by mistake; an automatic system upgrade, necessary for security purposes, may force it
to happen; all too frequently, the application may crash, or the graphical interface; an out-of-
memory event triggered in one application (e.g. a web browser) may cause other applications
to die, or some essential system service; or even without any process crashing, memory or other
resources may leak until the system will thrash like mad and crawl to a halt, and the user will
restart it.

Thus, most state fails to persist at a scale directly visible to the user, who is supposed to
explicitly manage the persistence: “save” state into files, move these files around, make local
copies, transfer them to other machines, etc. Making remote backups is an important respon-
sibility of the user, often ignored at the user’s peril, despite the foreseeable high probability
of the machine experiencing at least one of a catastrophic software failure, a hardware break
down, a theft, or a takeover by hackers, over the few years of its lifespan.

Traditional database servers do offer persistence services for structured data; but this per-
sistence can only be seen as “orthogonal” for the “stored procedures” written in each of their
builtin language. However, these programming languages that are generally too limited, too
awkward or too expensive to use for writing complete general-purpose applications.

Yet manual persistence is usually expensive, error-prone and insecure: an old 1978 IBM
report once evaluated the overhead of explicitly marshalling and unmarshalling data structures
to save and restore or send and receive them to waste 30% of total program code, not taking
into account checking, converting, or recovering data. It is unclear that the situation has
substantively improved since; meanwhile, parser and unparser issues account for a large number
of security advisories.[citation needed] What more, users must still constantly worry about saving
their data, then retrieving their data, or safely sharing it between their many devices.

Modern applications tend to hide the necessity of explicit saving from end-users in the simple
case of configuration changes, and to offer “recovery” options for documents not explicitly saved
when the application previously died. However, they fail to relieve the user from having to
handle any but very simplest cases of persistence; and they do it at great cost for developers,
who keep using the same underlying programming model of manual persistence.

7.3.5 The Cost of Orthogonal Persistence

Many systems have successfully implemented Orthogonal Persistence since as far back as the late
1970s[19, 6]. Yet the feature never made it to mainstream operating systems and programming
languages. It is interesting to speculate on the reasons they failed to reach wider use.
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One argued obstacle to the adoption of Orthogonal Persistence is performance, or, more
broadly speaking, costs. But the problem is not that Orthogonal Persistence as such costs a lot
to implement: the price of automating persistence can be quite small, and arguably smaller than
the price of dealing with persistence manually. However, Orthogonal Persistence does make low-
level errors extremely undesirable: memory corruption, type mismatches, bad indexes, resource
leaks, fork-bombs, security breaches, etc., will persist and permanently corrupt the system state.
It is achieving safety against these low-level errors that indeed has a large negative impact on
the cost and performance of computations, compared with running wild with unsafe languages
like C or C++ and letting programs crash without corrupting any essential persistent state.

For many decades, the cost of safety made it not competitive compared to recklessness, at
least for mainstream software. The market demanded compilers for low-level languages yield-
ing faster code, mainly C and C++, even at the expense of catastrophic loss of safety and
correctness in the inevitable presence of bugs. Consequently Orthogonal Persistence was not
competitive compared to manual persistence. And for those decades, operating systems and
development environments have therefore evolved in a way that is hostile to adding Orthog-
onal Persistence and makes adopting it costly out of path dependence. Yet, nowadays (late
2010s), most of the price of safety is already being paid by most software: most software use
“scripting” languages, typesafe languages, or languages otherwise “hosted” on a typesafe virtual
machine (JVM or CLR). And even when these technologies do not currently eliminate low-level
failures, they already pay the most of the price for this elimination. The time may thus have
come to reevaluate Orthogonal Persistence as a feature to include into operating systems and
development environments.

7.3.6 Development Ecosystem for Orthogonal Persistence

Orthogonal Persistence requires developers to use a safe language, but that’s not all. It also
requires that this safe language’s implementation should cooperate with the persistence engine.
And it also requires that the libraries, the colloquialisms, the coding patterns, etc., should
play well with Orthogonal Persistence rather than against it. For instance, there can be no
more expectation that restarting an application or rebooting a computer will be a panacea
that cures all software ailments. The entire programming culture is affected by what managers
might qualify as a “non functional” feature, i.e. one that doesn’t directly affect any program’s
user-visible interactions.

Each existing orthogonally persistent system thus comes or came with its own implementa-
tion of its own programming language, with its own libraries and programs and environment.
Even those that were based on a variant of an existing language (such as Java or C++), had
with their own modified implementation, a modified set of libraries and data structures to ac-
count for a modified coding style, new concepts to address new concerns (such as transactions,
schema upgrade, versioning, etc.), and new restrictions as to what is culturally acceptable to
do in an application.

This means that these systems intrinsically cannot reuse existing programming language
ecosystems as is. Which in a way is kind of the point: orthogonal persistence is a whole-system
property that is indeed supposed to deeply change the way people write software, for the better
(claim its proponents). Ultimately, systems with orthogonal persistence compete with entire
other systems, including operating system, programming language and development platform
at the same time.
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7.3.7 Historical Failure for Orthogonal Persistence

Now this essential incompatibility and rivality with other systems means that Orthogonal Per-
sistence could not “simply” reuse existing software infrastructure. Implementers of orthogonal
persistence, interested primarily in that topic, could implement the persistent aspect of the sys-
tem very well; but, not being as well versed in the other aspects of programming system, they
could not rival with other programming languages with respect to having a good and modern
set of features, a quality implementation, a wide range of libraries, static analyzers, dynamic
debuggers, refactoring tools, interactive editors, optimizing and parallelizing backends, etc.

To remain relevant, the Orthogonal Persistence community should have tried hard to work
alongside prominent members of the Programming Language community, so they could keep
up with progress in that community, and not be left far behind along those aspects that they
necessarily did not have the resources to all address. For reasons that would require historical
investigation, this collaboration did not happen. Maybe the Orthogonal Persistence community
failed to recognize that they desperately needed to work with otherwise healthy programming
language communities to become and remain relevant. Maybe they recognized this necessity
but failed to convince these communities that they had something worthwhile to offer.

Maybe they failed to focus enough on usability aspects whereby orthogonally persistent
systems should be easily deployable to entry-level programmers non-technical users. Maybe
they required too many system administration skills from new users, raising the barrier to
adoption. Maybe they failed to provide good data exchange capabilities, local and remote
backup capabilities. Maybe they were lacking in means of safe interoperation with other non-
persistent systems. Maybe they did not make it easy for a single system to handle programs
that have a wide range of different persistence and performance profiles, easily configurable by
the user.

Stepping back, the essential failure of Orthogonal Persistence can be traced to the fact that
it had to compete with entire systems, without having the resources to be relevant on other
aspects, and without the means to embrace or import existing technology as is. In other words,
the adoption of Orthogonal Persistence as a feature wasn’t incremental, thus making transition
too costly.

7.3.8 Orthogonal Persistence via Implementation Transformation

All the above discussion about Orthogonal Persistence was but context to this thesis’s claim
that First-Class Implementations can make Orthogonal Persistence relevant again, by making
it incremental, and user-configurable, rather than the matter of adopting an entire system that
uniformly provides of Orthogonal Persistence for every user.

Indeed, Orthogonal persistence can be achieved as a code instrumentation transforming a
transient implementation to a persistent one, whereby modifications are journaled and check-
pointed. And that code instrumentation is a the opposite of a natural transformation, for which
all the previously developed theory applies.

For performance purposes, the persistent transactions are usually evaluated optimistically
(see above section 7.2.8), assuming that indeed the computer won’t crash before the evaluation
results are persisted. This is another co-natural transformation. Of course, some irreversible
effects cannot be handled optimistically, but must be synchronized to persistent storage before
the computation may proceed to further irreversible effects that depends on the former: talking
to external systems that do not partake in the same optimism, controlling I/O devices, printing,
using robotic actuators, etc.

Different variants of these transformations correspond to as many different persistence poli-
cies: policies with different granularities on the persistent transactions; with different replication
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strategies; with different latency profiles; with different safety guarantees; with different domains
of optimism; with different levels of trust in various vendors, or in various pieces of software or
hardware; with different costs, and prices.

Yet in all cases, an implementation is instrumented so that the state of the computation
is preserved even in the erratic yet predictably common advent of a power loss or other kind
of system crash. Though they ostensibly implement the same abstract computation on top of
the same concrete computation, the differently instrumented (or non-instrumented) implemen-
tations possess different liveness properties in the presence of a wider domain of errors.

Thanks to runtime migration between carefully developed such implementations, users can
therefore achieve precisely the liveness properties they care about, at the price they are ready
to pay, without being limited to the choices provided (if any) by those who provide a fixed
semantic tower below them, whether system administrators, application developers, library or
infrastructure providers, operating system vendors, etc. End-Users can choose their persistence
policy independently from implementers of abstraction layers below, and providers of these
abstraction layers do not have to care for the details of persistence anymore, except to follow
the observability protocol of first-class implementations.

As a hurdle of adoption, there remains of course the question of whether this observability
protocol can be promoted in an incremental way. But on the one hand that is another debate,
and on the other hand, first-class implementations potentially provide a much higher value than
Orthogonal Persistence alone, since it enables not just Orthogonal Persistence, but also a whole
lot of other features.

7.4 Erlang-style Resilience

Erlang and its derivatives are somewhat unique in supporting a particularly robust style of
programming, where failure is ubiquitously expected as a normal thing to occur [21], and
handling these failures by killing and restarting actors is supported deep inside the language
and its standard libraries[2].

7.4.1 The Actor Model and its Fragility

Over the decades since it was introduced in 1973 [citation needed], the actor programming model
has been implemented in many languages, and most modern languages possess libraries that
offer some variant of it: in this model, computation happens concurrently in independent enti-
ties called “actors”, that interact primarily by exchanging asynchronous messages, or creating
more actors. In a pure actor model, message exchange is the only means of interaction, and
there is otherwise no mutable state shared between actors. In practical implementations, ac-
tor libraries preserve the means of interaction from the underlying programming language, and
even languages built around the actor model may include extensions for reasons of performance,
interoperation with the underlying system or libraries in other languages, etc.

Now, the actor programming model can be a pleasure to work with, since it nicely models a
lot of situations that programmers face; this is increasingly true as computations have started
to grow larger than fits on one processor, and span many processor, sometimes scaling to a
great number of machines spanning a world-wide distributed system. Yet, typical approaches
to implementing the actor model often lead to awkward performance or fragile software.

For instance, spawning one Operating System process per actor can be very expensive:
there is a lot of memory overhead involved in every OS process, and a relatively small limit
to the number of processes simultaneously usable in a system, which limits the applicability
of the actor model; communication typically requires many context switches from process to
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kernel to process, and every context switches tend to be very slow and throw away expensive
execution context; there is often a large impedance mismatch between the semantics of language
actors and that of OS processes, each tending to evolve very different kinds of options with
time; papering over these differences can be costly in terms of the complexity of interfaces to
support. Finally, processes are entities that may survive independently from each other and
from whatever interface developers use to control them; they can therefore go astray in a wide
range of configurations, and there can be a lot of complexity in managing them, keeping them
in synch with each other, handling version discrepancies, assessing whether they are functioning
in order, making sure that resources don’t leak.

Another strategy, more often adopted, is to spawn one thread per actor within the same
process, using whatever notion of thread the underlying programming language offers. Much
of the cost and complexity related to dealing with many operating system processes go away.
However this strategy can be very fragile: threads, whether managed by the operating system or
by special user libraries, share with each other the entire mutable state of their common process;
this mutable state typically requires a lot of caution to be taken by each and every thread
in respecting all the relevant invariants and conventions. One mistake, error or unexpected
condition happening in one actor, and the entire computation, including completely unrelated
threads, can go wrong in catastrophic ways, that can at times lead to massive financial losses
or even death.

Whichever way actors are implemented, but even more so when using threads, there are
many reasons why actors may fail: its execution may hit a software bug; it may hit a hardware
bug; it may be hit by cosmic rays or outer forces; it may fall victim to some ”wrench” thrown
by software like Chaos Monkey [citation needed] that deliberately introduces random failures into
the system to ensure that robustness issues are found and addressed earlier rather than later;
it may be targetted by some denial-of-service attack; it may exceed some resource threshhold;
it may experience a conflict between conventions followed by subtly incompatible libraries; it
may otherwise enter a state where it fails to correctly respond to queries.

Hybrid strategies are possible, but introduce a lot of complication, without really solving
the issues of either simple strategy above, only allowing the programmer to choose which set
of issues he wants to face while writing each part of a given program. This is an improvement,
but a limited improvement at a high price that few care to afford.

And yet, among all the systems that implement the actor model, one stands out, that
remarkably manages to solve these fragility issues where most others fail: Erlang [citation needed].

7.4.2 Robust Actors: Erlang

Erlang is a programming language that provides a mostly pure actor model, except that it calls
its actors “processes”. Each actor is specified in terms of a pure functional applicative language,
where the only side-effects are message-passing and spawning new actors.

However, unlike other implementations of the actor model, Erlang (and its derivatives like
Elixir or LFE, Efene, Joxa[citation needed]) allows programmers to build extremely robust actor
systems. Its approach to robustness is to start from the assumption that exceptions, errors,
failures and mistakes will happen, and that the system should as matter of course be able to
easily recover from them— which it does by having supervisors monitor the status of some other
actors, detect when they fail, and then thoroughly kill them and restart them. To elucidate
the depth of the paradigm shift in this approach to software, see notably the 2017 paper on
miscomputations by Tomas Petricek [21].

One key mechanism to achieving this very robust style of actor programming, that distin-
guishes Erlang from about every other implementation of the actor model, is Erlang’s ability
to safely kill an actor at any point in time, which other implementations do not possess.
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With this ability to kill, Erlang can indeed express the concept of a supervisor in the
language. A supervisor may simply wait for the supervised actor to crash, or actively probe the
supervised actor by checking its answers to simple regular “pings” or to more elaborate semi-
random semi-periodic queries. Importantly, though, in Erlang the supervisor can do something
when it detects failure, namely kill the failed actor, whereas in other languages it can only
cry as the failed actor corrupts the entire system. The dead process will be unregistered from
whatever service brokers it was subscribed to, and the incoming request traffic will be picked
up by its healthy registered peers, until its replacement is fully operational.

Because interesting services are made of many actors that play in concert and have mutually-
dependent state, when an actor dies (whether of natural or super-natural causes), all the actors
linked to it (typically but not necessarily, the parent that spawned it and the children it spawned)
are in turn sent a signal to terminate gracefully. They can explicitly catch and handle this signal
if they really care to survive or to execute some cleanup code before they die; but by default,
the linked actor just dies immediately, freeing all its resources; when it dies, so will a graceful
termination signal be sent to its own linked actors, recursively, in a tree of related actors
(called a “process tree” in Erlang). When actors fail to gracefully terminate, they can be killed
summarily, at which points their resources are freed without the opportunity to execute some
cleanup code (and to fail while trying to execute it). This ability to safely terminate or kill
entire trees of linked actors is essential to building an extremely robust architecture where large
services made of many coordinated actors automatically restart in a coherent way when failures
happen — but also when regular system upgrades happen.

7.4.3 On Killing

Why is killing actors easy in Erlang and hard in other actor systems? Because Erlang strictly
follows a pure actor model, and no shared state is jeopardized when an actor is killed.

In Erlang, the actor termination and kill signals work asynchronously : unless an actor explic-
itly catches and handles a termination signal, it will die immediately; and it will die immediately
if it receives a kill signal, that it cannot handle. This means that a regular process may die
in the middle of whatever operation it is executing. Because the Erlang programming model
is pure and processes interact exclusively via message passing (or nearly so), there is, by con-
struction, precious little shared state that may be left in an invalid state when an asynchronous
signal happens: only some system state to track actors and atomically transmit messages to
mailboxes, and a few narrowly used extensions for shared buffers or calls to C libraries. The
system implementation can take care of this little shared state, and ensure updates to this state
are atomic with respect to asynchronous signal delivery; that state is completely hidden below
the abstraction provided by the language; there is no way a program written in Erlang can
possibly break these abstractions or leak resources (though an extension written as a C library
of course can).

Now, in most languages, that do not strictly adhere to a purely functional paradigm (like
Haskell does), there can be an arbitrary amount of shared mutable state that would be left in
disarray if a thread were shutdown or killed in the middle of its execution. Moreover, this shared
mutable state is not under the control of the system implementation, but arbitrarily created
by user software. Stateful data structures are usually a common thing; system calls or and
foreign libraries often involves a lot of state; the language implementation’s runtime environment
itself has plenty of shared mutable state, that often gets more complex as people extend this
implementation. Unless the language, its implementation, its libraries, its foreign function
interface, its extensions, all take great care in supporting asynchronous abort signals, odds are
these asynchronous interrupts will lead to catastrophic failure of the overall computation.

Indeed, if an asynchronous signal is received, there is a non-negligible probability that some
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of this large shared mutable data will be in some intermediate state, such that killing the current
thread would then leave the overall computation unstable, and unable to operate correctly. A
lock may be held that will never be released. The state protected by that lock may violate
necessary invariants to the operation of its high-level interface. Some resource borrowed from
another actor may never be released or may otherwise never complete its life cycle, and even in
the best scenario hoard a growing amount of leaking resources. The program may be experience
a deadlocked or live lock. Some distributed protocol that was previously initiated may never
complete. Another thread waiting on a spinlock may spin the processor forever in a tight loop
consuming lots of power. If the invariant broken is low-level enough, the program may crash in
ugly low-level ways, or, worst of all, it may delete important information, corrupt data, return
wrong answers, issue undesired side-effects, and do the wrong thing to your system — which
can conceivably cause damage up to great financial loss or death. On the other hand, failing
to terminate or kill the actor when it is obviously failing can also lead to other variants of the
same catastrophic failure modes.

If the probability of corrupting shared state is small enough in a given application, it may
be acceptable to summarily kill a failed actor. But even a tiny probability of failure for a single
killing operation can mean a large probability of failure over time if the idioms of Erlang are
used, whereby tens of thousands of processes are constantly being supervised on every machine
in a large distributed system, and asynchronous termination and killing are regular activities,
rather than rare desperate fallback solutions. Therefore, the programming model that enables
Erlang programs to be robust is not available unless the probability of failure from killing an
actor is entirely negligible.

7.4.4 Workarounds to the Unavailability of Asynchronous Signals

In languages other than Erlang (and its derivatives), there are some limited workarounds that
may enable use of actors while providing an ersatz of Erlang-style robustness, by cooperatively
emulating the evaluation model that these languages cannot directly express.

• First, the programming language will not allow for asynchronous killing signals (except
maybe as a desperate debugging tool). Termination signals will have to be explicitly and
synchronously handled by each and every actor that partakes in the protocol.

• Developers must socially abide by and enforce programming conventions, whereby all
actors should regularly call the message loop; programmers must manually take care that
there should never be a deadlock, live lock, non-terminating computation or runaway code
execution between two consecutive calls home to the message loop.

• If some algorithm may involve indefinitely long computations, its implementation must
maintain a discipline of “cooperative multitasking”, like in the bad old days of the 1980s,
whereby these long-lived computations will be specially modified to periodically ”yield”
execution and poll for termination signals, giving the message loop the opportunity to
process such a signal while the computation is in a stable state.

• The programming language at hand must be considered as a replacement not for Erlang it-
self, but only for the lower-level language in which the Erlang VM, BEAM, is implemented
(i.e. C). This means that developers will be exposed to all the ugly synchronization de-
tails, that they will have to manually handle, following some conventional design pattern,
without being able to fully abstract over these patterns.
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• Any further abstractions over the programming language can only be enforced by social
convention. Most languages have no means to express the conventions that must be re-
spected and prevent users from reaching into implementations and breaking the invariants
that these abstractions depend on. Only one language, PLT Racket, allows developers to
build and enforce a full abstraction for module, thanks to its Racket #lang feature, that
imposes global (rather than merely local) restrictions on what software inside the module
can express.

• If you really want a group of actors that live and die together, they can be put them
in a same Operating System (OS) level process (and either use OS process groups to
implement trees of related actors, or implement yourself that notion using some kind of
supervisor process). Then you can kill and restart the OS process and its entire set of
actors. Unlike Erlang “processes” or OS threads, OS processes are heavy weight; but at
least, this programming style works, and sometimes that’s exactly what’s needed.

• In general, as much as possible, developers should use a pure functional style and restrict
side-effects to local state that is private (not shared), thus reducing issues related to shared
state for processes that use this style. However, because the programming language’s
implementation’s runtime and the available libraries were never designed for asynchronous
interrupts, their own use of shared resources can still cause catastrophic failures in case
of asynchronous termination signals.

These strategies of course work, but they lead to code that is awkward, inefficient, not
modular, tiresome and error-prone to write, impractical except at a small scale, and still fragile.
It is not satisfactory to only provide fragile constructs that will explode when developers fail
to respect non-trivial coding conventions, and to maintain these conventions as the software
evolves.

In the end, these strategies are “design patterns” that transform programmers into manual
code generators who instrument their computations to follow a cooperative shutdown protocol.
But Rich Hickey said: [?] What this issue really calls for some robust abstraction mechanism in-
side the programming language, that will automatically enforce any invariant through coherent
automated code instrumentation rather than manual discipline.

7.4.5 Observability as Necessary and Sufficient Solution

Automatically generating code so that it always strictly follows some additional conventions is
the very definition of code instrumentation, also known as the “opposite of natural transforma-
tions of implementations”.

Just like support for automatic Garbage Collection can be added by instrumenting control
around every access to the heap using e.g. read or write barriers, support for asynchronous
interruption can be added by instrumenting control around every access to shared resources
using e.g. roll-back or roll-forward of atomic transactions. Indeed, Garbage Collection is a
particular case of an operation on a shared resource. However, in the case of aborting threads,
unlike in the case of collecting garbage, it is not enough to achieve observability at one fixed
low level of abstraction: indeed, the thread’s execution partakes in protocols at every level of
abstraction; preserving only the invariants up to one low level of abstraction while breaking
the more restrictive invariants at higher levels of abstraction would therefore leave the system
unable to correctly make further progress for all operations at those higher levels.

The solution to enabling the killing of threads in presence of user-defined shared mutable
state is therefore user-defined observability: whoever defines the shared mutable state must also
define safe-points, transactions, or some other means of achieving observability around accesses
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to that state, as a part of the requirements for this shared mutable state to be usable. Note that
“shared mutable state”here does not have to specifically be the bits at some address on a shared
memory multiprocessor or monoprocessor. It can be any part of any distributed protocol, at any
level of abstraction. If a group of machines vote to coherently maintain an evolving mapping
from some abstract symbols to a weighted set of likely used definitions, then no fixed memory
address may be involved on any machine, yet the result of the distributed protocol is very much
shared mutable state, and there might be a well-defined meaning to killing one of the activities
that partakes in this protocol on one of the machines.

Observability is thus a condition both necessary and sufficient to achieving robustness in
killing threads — assuming that killing threads is possible at all, which is itself a necessary
condition of a robust distributed system, where you may never fully trust a process and its
threads not to go wrong, nor the granularity at which it will go wrong.

Now, what if there is a bug in the user code for observability, and the computation fails to
achieve observability? Then the situation is about as bad as if observability was not attempted
(as is the case in traditional systems without first-class implementations); the situation is ac-
tually slightly worse, for all the bad side-effects of the buggy attempt to achieve observability.
In the end, the same bugs that make the eventual failure of a thread inevitable also make the
system as a whole unstable; and they make it so in an unrecoverable way, since killing of bad
threads couldn’t be safely achieved.

Of course, observability can always be still achieved up to some robust abstraction level R,
even when it cannot be achieved above R. Thus, any program P that depends on higher-level
invariants not encoded in R may be broken; but the system continues to work just fine at level R
and lower levels of abstraction, with their laxer invariants. Other high-level programs Pi above
R that do not share state with P (at least, none that P is currently breaking) may also be able
to keep running. At that point, the computation P can be reset to some state defined at level
R, but that any state it possesses at a higher level of abstraction than R may get stuck and
be lost; partial recovery of the lost state might still be achieved through special steps manually
taken by a competent system administrator; but it is a costly expense that few can afford.

In most cases, the hardware at the very least will preserve its physical properties indepen-
dently of software failures — though, there have been software failures known to cause irrepara-
ble damage, and malicious attacks exploiting those failures: overheating a computer and even
causing fires, physically crashing hard disk heads, stuffing a printer, making nuclear centrifuge
devices spin to their death, etc. Beyond mere hardware safety, the operating system usually
provides a stable, observable abstraction, and on top of that, language implementations often
provide robust observable virtual machines. Yet, since these programming languages provide no
cheap and easy way for users to extend this observability to the computations implemented by
their programs, therefore, programming languages offer no stable basis for state above what the
operating system provides, and programmers must constantly write their own layers of software
to save and restore state that they care about (see above section 7.3 on Orthogonal Persistence).

If a given programming language or programming environment is to help with more than
a single layer of abstraction, it must therefore enable the expression of all the distinct relevant
notions of a safe point, one for each level of implementation in the semantic tower — all within
the same programming language and runtime infrastructure. In other words, it must support
our observability protocol.

7.4.6 Full Observability Protocol Required

The simplest way to achieve observability in a multithreaded setting, as used by all implemen-
tations that provide garbage collection, is to support blocks of code that are atomic at the
higher-level, despite not being atomic at the lower-level. Any point outside these blocks (or at
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either end of one) is a safe point, i.e. is observable; points inside the blocks are unsafe, and
the block will be rolled forward (or, sometimes in some more elaborate implementations, rolled
back) to reach a safe point. In some implementations, all points are safe by default unless
explicitly part of an atomic block; the “blocks” are often statically defined in terms of ranges
of the program counter, but may be dynamically defined in terms of an “interrupt disabled”
flag (for instance, the lower bit of a register usually aligned to memory addresses). In other
implementations, all points are unsafe by default unless explicitly marked as safe, which again
can be static (known program counter addresses) or dynamic (calls to a special trampoline,
possibly conditional on checking an observation flag).

Now asynchronous signals, when received, require observation at the level of abstraction of
the signal handler, and thus synchronization to a point that is safe for said level of abstraction.
The default handler will kill the thread (after reporting or logging an error and a stack trace),
and requires observation at the highest level of abstraction relevant to that thread. There again,
asynchronous signal delivery must adapt to the semantics of the application, and there can be
no “one size fits all” notion of observability: the notion that works at one level of abstraction
won’t work at higher levels, and low-level libraries that partake in the atomicity protocol for
the implementation’s garbage collector do not thereby suffice to provide any help with respect
to the atomicity that matters, at the application level.

What more, reaching a safe point is usually enough for the purpose of killing threads defined
at that level without having to extract the abstract state; but reaching a safe point is not
usually enough for other purposes, including that of killing threads defined at a higher-level
than that of the safe point: Indeed, reaching a safe point for that higher-level might itself
require extracting data about the current state at said higher-level, for instance to identify
shared resources to release, run cleanup forms, or to otherwise commit or rollback the current
transaction. Since there is no upper limit to what abstractions users might want to build
on top existing computations, there is no point where you can for sure stop respecting the
interpretation protocol in addition to the safe point protocol — at least, not until you reach
the actual end-user interaction.

A complete solution therefore necessarily uses the entire first-class implementation protocol,
including observability to synchronize to safe-point, interpretation to extract higher-level state,
and completeness to carry the high-level synchronization back down to the low-level. Only this
full protocol can“lift” the notion of safe point, so that a higher-level safe point may be recovered
from a lower-level safe point, and so that threads may be safely killed.

7.4.7 Performance Tricks for the Observability Protocol

A naive understanding of “recovering the state at some abstract level” can be too expensive
to be feasible: you don’t want to serialize the entire state of the virtual machine (potentially
gigabytes of memory or more) every time you process an asynchronous interrupt handler. The
cost of eagerly evaluating a high-level representation for the state of a large computation, at
every observed safe-point, would be prohibitive; the cost would be even higher in concurrent
systems where abstract observation might require synchronization between many computing
devices. The abstract state recovery must to be lazy, so the system only extracts the bits of
abstract state actually required by the automated handler or inspected by the human operator.

A naive implementation of safe points would create a closure to express this recovery, at
every safe point. A slightly less naive implementation would only create that closure if an
interrupt was actually caught at that safe point. Therefore, a general protocol for a safe point
is therefore to have some kind of special form (safe-point abstract-level concrete-level

state ) to declare safe points; the level arguments somehow identify the level of abstraction of
the safe point (these arguments should if possible be known at compile-time, and might even
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be implicit), and state is a form only evaluated when an interrupt is caught at said level, that
permits recovery of the state at specified abstraction level, if possible lazily.

For lower-level implementations, and especially where most points are safe by default, the
state recovery can conceivably be done based on off-code debugging annotations in the style
of the DWARF[citation needed] format. Notably, for performance reasons, tight loops and highly
used code might eschew any polling for interrupts; when an interrupt is received, the off-code
annotations can be used to synchronize to a safe point: the assembly code might be“interpreted”
until a point is reached and control escapes; on some architectures, the escape code could be
generated dynamically; on other architectures, tight loops would have a shadow copy that
escapes rather than loops, so that the interrupt handler could, based on the meta-data, add an
offset to the program counter before calling the code, causing the current loop iteration to be
completed before an escape to the higher level.

So as to avoid polling for interrupts too often and maintaining many copies of state-
extracting code, the compiler will hopefully knows how merge safe-points for multiple levels
of abstractions. Thus, tests for asynchronous interrupts at higher level safe-point and creation
of corresponding higher-level state objects will only be evaluated if an asynchronous interrupt
was already caught at the corresponding lower-level safe-point, yet wasn’t handled already by
a lower-level handler.

An even better compiler would elide redundant consecutive safe points, and only poll for
interrupts at the beginning of functions and loop iterations — just like the implementation
presumably already does for its own lower-level checkpoints. To allow single-stepping with a
finer granularity than the concrete computation allows after elision of these redundant safe
points, the implementation of the abstract computation may have to maintain a higher-level
representation of the code, e.g. in term of an expression graph or of portable bytecode, that
can be interpreted more slowly but with finer granularity than is available with the lower-level
code.

7.4.8 Language and Library Support for Asynchronous Interrupts

Now, it is not enough to have compiler support. The runtime library must also be written
in a way that supports asynchronous interrupts, and the programming language must provide
suitable abstractions. Indeed, when allocating any kind of resource that an asynchronous
interrupt may necessitate to release, the atomic operation with respect to interrupts should be
not merely allocating the resource, but allocating it and atomically binding some variable to
it, and registering cleanup forms using e.g. a finally clause, to properly release the resource
without a leak should an asynchronous abort be received. The finally clause will in turn have
to either be atomic with respect to the high-level interrupts, or to catch and synchronously
handle these interrupts, or to otherwise reenable interrupts after some initial processing.

Potentially long-running library functions, and especially higher-order functions, may also
have their own issues with respect to declaring safe-points for higher levels of abstraction within
the dynamic extent of their function call. When an abstraction level reexports such functionality
from lower levels, it may have to subtly wrap this functionality in variants that suitably handle
safe-points. And the compiler may have to be able to suitably optimize away most wrappers.

There is also the case when a thread receives a further asynchronous interrupts in the middle
of processing an existing one; or when it gets stuck while executing cleanup forms in general.
Asynchronous interrupts are specified with a target level of abstraction. By default, an abort
signal (as a Unix kill -TERM) works at the highest level of abstraction that the programmer
cares about, and should run all the cleanup forms. If the operator gets impatient, he may
send signals with lower levels of target abstraction (down to a Unix kill -KILL), at which
point levels of abstractions higher than the target level are invalidated, their cleanup forms are
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eschewed, and all linked processes at this level of abstraction are killed (and hopefully restarted
by their supervisor). It is therefore possible to “lose” a layer of abstraction — if there was a bug
in the implementation of this layer of abstraction, at which point, well, that is exactly what
“having a bug” means.

All in all, supporting asynchronous interrupts requires special care while writing software
libraries as well as deep support in the compiler itself. This can be a lot of non-trivial work,
but the result might be worth it, as this enables not only Erlang-style resilience, but all the
other applications suggested in this thesis.

7.5 Further Transformations

7.5.1 Optimization

Many optimization passes can be viewed as natural transformations of implementations: take
an implementation Φ−1 of an abstract computation A with a concrete computation C, and
identify a“better”implementation Ψ−1, that minimizes some metric, applies some normalization
strategy, some local rewrites, some change in representation, etc. The order of evaluations is
locally modified, but the sequence of abstract state at observable safe points is preserved (or
graph of possible paths through those states).

This realization can help specify and prove the correctness of compiler passes. But by treat-
ing these passes as first-class entities that users can manipulate, rather than hiding them be-
hind an opaque compiler, it becomes possible to let programmers or meta-programmers simplify
or enhance existing programs, to develop efficient domain specific languages or programming
language extensions, or to guide a compiler towards the more efficient evaluation of specific
computations in a way that remains correct by construction.

7.5.2 Higher-Order Transforms

Now that we have identified a universal concept of natural transformation of implementation and
their opposite code instrumentations, it becomes possible to envision libraries of typed functions
that may apply to arbitrary such code instrumentations, or that may uniformly generate such
code instrumentations. The usual categorical toolkit may apply to help develop them, work
with them, compose them, build higher transformations between transformations, etc.

7.5.3 An Open Topic

This chapter has only skimmed over how the notions of first-class computation and first-class
implementation can help bring about a coherent new paradigm, that provides a unifying frame-
work to think past and future techniques.
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Chapter 8

A Reflective Runtime Architecture

8.1 Runtime Architecture

8.1.1 From Blocks to Buildings

What kind of system architecture is necessary for all (or most, or a lot of) software to have first-
class implementations maintained at all times? What kind of interactions are made possible
and affordable by such an architecture that would otherwise be impossible or prohibitively
expensive?

Just like new building materials (wood, stone, reinforced concrete, etc.) or new building
techiques (scaffoldings, arches, cantilevers, etc.) can usher new eras of architectural styles in
buildings, new primitives (closures, objects, processes, distributed map/reduce services, neural
networks, etc.) can lead to new ways of organizing software, by expanding the realm of the
possible, and modifying the balance of the affordable.

We will offer suggestions for how the architecture of a computing system would be different
from what is currently mainstream if the system were to maintain at runtime fully abstract first-
class implementations for all computations, at least by default — and then to take advantage
of this capability. In the following chapters, we will call the suggested architecture a “reflective
architecture”.

8.1.2 Interactive Systems

A reflective architecture, one that maintains a fully abstract first-class implementation for all
computations, makes sense if and only if the software can be dynamically inspected or modified
after it is initially started. But that’s indeed the case in a wide variety of common situations.

Development Platforms

In a Development Platform, such as GNU Emacs, or an Integrated Development Environment
(IDE), etc., sentients interact with a computing system to develop software. The software is
being modified; the developer tries to make sense of unexpected behavior, or of unsatisfying
performance, and to evaluate how some or some other changes affect the parts he’s trying to
fix, while not disturbing the parts he’s trying to preserve. The developer often has to navigate
the execution of the software at multiple layers of abstraction, until he can pin-point the precise
level at which to make a change.
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User Interface Shell

In a User Interface Shell, whether it is graphical like the macOS Finder, or it is a “console” text
interface like ZSH, users also control applications and various smaller programs, and sometimes
even simple scripts that they write. Users may configure these programs, sometimes compose
them, control their execution environment, interrupt their execution, monitor the resources
they use, etc.

Although the granularity at which users typically employ these shells is usually coarser than
the granularity at which developers use development platforms, in the end, a user interface shell
is a form of development platform, and a development platform is a user interface shell. Indeed,
the difference between a user and a programmer is that the programmer knows that there is no
difference between using and programming.

Operating System

Rather than defining high-level abstractions expressed in a high-level language, an operating
system typically defines its primitives in terms of bits and bytes, of “system calls” and register
and memory modifications at the level of CPU instructions, or almost equivalently at the level
of calls to functions in a low-level language like C, and in terms of an “executable file format”
combining the above.

Yet in the end, low-level as its interface might be, an operating system is the same as a
development platform: it also allows its users to develop new software, configure it, compose
it, start computations, control them, etc. — if not, it would just be called “firmware”, not
“operating system”.

Distributed and Virtualized Application Management

Larger distributed computations also require not just middleware to effect communications,
but executive interfaces to start computations, monitor their resource usage, control them, stop
them, restart them, etc. These layers are also interactive systems, though they tend to have
leaky abstractions such that the complexity of all the underlying layers is compounded rather
than abstracted away.

8.1.3 Reflective Interactive Systems

Interactive systems can be augmented with runtime reflection (as described in previous chap-
ters), yielding some primitives missing in existing interactive systems. Whereas existing sys-
tems can destroy an existing computation (SIGTERM and SIGKILL in Unix), sometimes stop and
restart it (SIGSTOP and SIGCONT in Unix), a system with runtime reflection can also take a
running program, and: (a) stop it and recover its state at a higher level of abstraction, or (b)
migrate it to a different implementation while it’s running.

The minimal API for that is that the system maintains for every running computation not
just the state of the computation in its current concrete implementation, but also a structure
of more abstract interpretations of this computation, or more concrete implementations. And
each level transition in this structure is an interpretation or implementation (depending on
the direction it’s taken) that annotated with its own properties and the computational content
thereof (e.g. totality, completeness, liveness, observability, etc.).

These abilities and their applications have been described in previous chapters; the following
chapters will explain how they may affect software architecture.
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8.2 Every Computation has a Semantic Tower

8.2.1 First-Class Semantic Tower

A (traditional) irreflective interactive system will only keep track of computations at a single
canonical low level of abstraction, that of its “real” or “virtual”machine. Inasmuch as there is a
“semantic tower” implicit in every computation, all of it is destroyed at compile-time, and only
the ground floor remains.

A reflective interactive system considers that no level of abstraction is either more real or
more virtual than any other: they can all be considered as being actually run, and they can
all be virtualized without notice. What matters is that a reflective interactive system will keep
track of each computation simultaneously at all potentially interesting abstraction levels in its
semantic tower. We saw in previous chapters that this tower need not be a linear order and
need not be finite (much less so with cardinality countable with one’s fingers); rather, this tower
can itself be an arbitrary category, possibly infinite.

Now, the user or the system may at any time change the current abstraction level of a
running or stopped computation from one level of the semantic tower to another. When that
happens, the system picks an efficient transformation from the old level to the new level, that
avoids going through unnecessary or slow intermediate representations. The computation is
now considered at the new level, and a new set of potential transformations is available, to
reach the other levels in the semantic tower, nodes of its category.

Conceptually, the system could represent the semantic tower as a labelled set of transfor-
mations from the current level to the other ones. When a transition to a new level happens,
the new of available transformations could thus be computed by composing each element of
the previous set of transformations with the inverseof the transformation just applied. A naive
implementation of this strategy would of course be terribly inefficient in time, and grow linearly
in space as more transitions occur; if the composition is computed eagerly, there is also a linear
growth in the size of the semantic tower.

A better model is to have a first-class representation of a semantic level (i.e. of a node in
the category constituted by the semantic tower). Then, a transition consists more simply of
applying the proper transformation, which can be computed by composing elementary transition
functions, then tracking the new semantic level. Its complexity remains constant in time and
space. Moreover, if done lazily and symbolically, this composition of elementary functions can
also be “optimized” by “deforesting” intermediate results.

8.2.2 The World on top, and Turtles all the way down

The semantics tower associated to each computation may have many distinguished levels, beside
the one “currently running”.

At the top of the semantic tower, the sentient user specifies the computation they desire.
This computation embodies the world as as they will experience it. The system is supposed
to implement this specified semantics; an obedient servant, it has to conform to whatever the
sentient user has specified so far. Any discrepancy from that specification is a damning bug for
the system.

At the bottom of the semantic tower, is whatever computation is currently running. This is
the only level that traditional irreflective systems keep track of. But in a reflective system, this
is not a permanent bottom, because the system may always dynamically virtualize the current
machine, and add an implement layer beneath, whether for the purpose of instrumentation or
performance or migration to a different machine. When this happens, the system is then lifting
the entire semantic tower up one level (or several levels) and adding new stories underneath,
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while it’s running, without the user-visible world being observably affected. Thus, there is a
fixed world on top of the semantic tower, but below it’s turtles all the way down with no fixed
bottom.

Between this top and this bottom, and optionally also above this top, stands the “current
tower” of abstraction levels into which the current bottom computation can be interpreted
without the need to migrate.

8.2.3 Static and Dynamic Implementation Control

Often, the user, or the implementer for him, is interested not just in the user-visible world, but
in a specific implementation of this user-visible world. He then specifies not the conjunction of
this user-visible world and of an implementation strategy to apply to it.

Together, this abstract computation and implementation strategy constitute a distinct, more
specific, more concrete computation; one where already two related levels are distinguished: on
the one hand the “concrete” computation, obtained by applying the implementation strategy to
the high-level computation, and that constitutes the specification as far as the lower levels of
the system are concerned; and on the other hand, the “abstract” computation, that constitutes
the world as visible to the end-user, and that may be at any time recovered to effect a change
in implementation strategy, at the bequest of the user or of the implementer he delegates to.

This implementation control by specifying an implementation strategy can be static or
dynamic: It can be static, by specifying the strategy at compile-time, at which point the strategy
is wired into the object code that runs on the low-level machine. Or it can be dynamic, as the
user changes their opinion, or something changes in the environment, and the user, or one of
his proxies, refines or otherwise modifies the implementation strategy. Alternatively, they may
decide that they trust the system or not be interested in implementation anymore, because the
system’s default strategy now proved it works well, and the user doesn’t care in the details
anymore. Then, the user may drop the implementation strategy, or vastly simplify it, and thus
move the specification back from a lower-level specification to a higher-level specification.

If we squint our eyes, we can even see all the interactions of the user as changes in the
computation he is interested in: his access rights define the top of the semantic tower of his
computation, where one amongst all possible algorithms relate the resources and I/O devices
that he has access to; but the initial implementation strategy is the trivial unit category with one
point and its identity arrow, without any side-effect. Every change in the effective computation
requested from the system can be seen as a change in the implementation strategy for that top
computation.

8.2.4 Intermediate Management

In between the user’s bidding and its ultimate low-level executors, there may be any num-
ber of intermediate layers of management, each specifying an implementation strategy for the
computation it is specified to implement.

Each layer is thus limited in its power to implementing what the higher management layers
require; and each layer may be invalidated by any of the upper layers, and required to do
something different, or replaced with different workers altogether. There is thus a hierarchy of
management, where each actor has limited capabilities in a hierarchy of access rights. The top
of the hierarchy is specified by the User; the bottom is controlled by the System; in between
there can be a continuum of agents closer to the User or further from Him.

For instance, a simple management layer for cloud computations may monitor the resource
usage of a long-runnning computation and the prices of resources as available from various
cloud providers; based on current state of the market, it may stop, migrate and restart the
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computation. The user may provide some parameters that control the spending strategy; or
may even override specific parts of the code that the system would otherwise use as a default
strategy.

In another common instance, computation workers may include some JIT (Just-In-Time
compiler) controlled by a monitor, that decides which parts of the code to compile or to aggres-
sively optimize, and which parts of the code to just interpret naively. There again, the user, or
some intermediate optimization layer, could conceivably provide explicit implementation hints
to the workers’ JIT, e.g. based on data accumulated from profiling typical runs. In the end,
each management layer must strictly implement what the upper layers specify (up to what the
user specified), but there can be a lot of leeway and fluidity in how the responsibilities are laid
out below what the user specifies.

8.2.5 Dividing Control

When multiple parties are involved in a computation, they may each have specific access rights
regarding which parts they control, and which they don’t. This truism is valid when parties
control disjoint components at a given level of abstraction (vertical stripes of our diagrams); but
it is also valid when parties control disjoint “slices” of the semantic tower (horizontal stripes of
our diagrams); or even the intersection of components and slices (rectangles of our diagrams).

In such a setting, parties handling directly superposed layers would be bound by a contract
such that (1) the party responsible for the high-level slice of the computation has no access to
low-level aspects of the computation through which one could potentially subvert the system,
whereas (2) the party responsible for the low-level computation must strictly abide by the high-
level specification of the computation and is not authorized to leak secrets to third parties. In
other words, the higher-level and lower level slices must be related by a full abstraction.

For instance, when delegating execution of some programs to the cloud, the contract be-
tween the user and his cloud provider will typically limit what control the user has on the
implementation by locking the programs in a virtualization layer that isolates him from the
hardware, and maybe subjects him to eviction based on counter-bids in a fluctuating market.
Meanwhile the provider is required to implement virtual machines that completely and correctly
implement the promise computation model, and performs within guaranteed levels of service
(speed and latency distribution, etc.). The user may specify some implementation strategies,
but is not allowed to go below whatever interfaces the implementer provides; the user may not
use low-level tricks to circumvent any barriers the implementer sets between users or uses to
ascertain the integrity of his systems. The implementer in turn may not be allowed to leak
any of the secrets of the user (his implementation must be “fully abstract” within observable
parameters). If the implementer in turn leases resources from a yet lower-level provider, then
a similar contract will bind them where he now has the role of user.

The semantic tower in general is therefore not just a pure stateless mechanism that “trans-
parently”implements semantics without adding any information; to the contrary, it can be a rich
dynamic stateful ecosystem, where the interactions between actors can be ruled by elaborate
contracts.

8.2.6 Ubiquitous Reflection

In a reflective interactive system, each and every implementation layer of the semantic tower of
every computation must expose a reflective interface, constituted by the computational content
of suitable variants of completeness, liveness, observability, etc. Thus, every programming
language, every virtual machine, every translation layer, every macro-expansion pass, must
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enable developers who use it to prove these properties, or at least to express the computational
content of these proofs.

For sequential computations, this means that languages must provide some primitives to
declare safe points or check points, at each of which some function may be defined that can
recover the higher-level state. For concurrent computations, this means that languages must
provide atomic operations or transactions, at the ends of which some function may be defined
that can recover the higher-level state. A naive implementation of these safe points and atomic
operations can be quite expensive, and so can an overly eager implementation of abstract state
recovery functions. Therefore good languages must provide good declarative ways to express
them, that allow for efficient implementation.

Now reflective primitives are not just required of the languages and tools that developers
use; it is also required of the languages and applications that they write. And indeed, every
application can be seen as a domain-specific language in which user interactions specify appro-
priate system responses; and every language, whether general-purpose of domain-specific, may
be used a computation back-end for higher-level computations.

8.2.7 Bootstrapping Reflection

When a language fails to provide suitable reflective interfaces, maintaining reflective function-
ality becomes more expensive, though not impossible.

First, as long as some the computation runs on top of a suitably virtualized CPU at the
bottom, it is always possible to simulate, record, replay, checkpoint, persist, analyze, instrument
or otherwise manipulate the computation as a first-class entity. The problem is that the cost of
retrieving the high-level semantics from the low-level execution state, while finite, is tantamount
to that of reimplementing the entire computation stack, including every application and pro-
gramming language involved. This cost is compounded when the source code is not available,
or of very bad quality, or itself a complex entanglement of many layers of leaky abstractions.
In the end, it may simply not be worth it — though often, simple instrumentations can rely
on said bad quality code being naive in its implementation strategy, so that structure can be
retrieved by injecting high-level changes and automatically comparing how that affects runs of
the code.

Second, when some abstraction level lacking support for reflection is targetted for the con-
crete computation of a semantic tower (or of a slice of a semantic tower), it is always possible to
implement the reflective primitives the hard way on top of the irreflective substrate: generated
code can include at regular safe-points checks for an escape flag, which if set causes causes
the program to jump out to the monitor, providing it a function or other descriptor that will
reify the abstract state; if the state must be recursively reconstructed at every frame of the
call tree, special return values can be recognized, or special exceptions can be caught, that will
recursively trigger the reification and escape; if some of the computation state is implicit in the
programming language, generated code may maintain an explicit shadow for the implicit state,
allowing it to be reconstructed; at worst, the low-level computation may be used to interpret
a virtual machine with well-defined semantics and explicit state, that may then be made the
actual target for higher-level computations.

These are all well-known techniques, routinely used to achieve special purpose reflective re-
sults: garbage collection, migration, redundancy, white-box testing, and any of those techniques
mentioned in previous chapters. We propose that the very same implementation techniques may
instead be used to achieve general purpose reflection.
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8.3 Every Tower has its Controller

8.3.1 Controller Meta-programs

It is usually desirable for migration to happen automatically as directed by an external program,
rather than to be manually triggered by the user, or to follow a hardwired heuristic. Indeed,
most users, and most programs, could not care less about most of the details that are dealt with
using migration, whether they are about cache lines, Just-In-Time (JIT) representation of code
or data, availability of cloud resources, etc. Moreover, a heuristic hardwired in the computation
would make that computation both more complex and more rigid than necessary, making it
simultaneous hard to reason about the program and hard to adapt it later to the precise needs
of the users.

For all these reasons, a reflective architecture includes the notion that every computation
has a Controller: a meta-program that controls this semantic tower. The controller will follow
relevant signals and dynamically control when to incrementally or totally migrate the compu-
tation from its current implementation to another one. As it does, the topmost computation is
fixed — or rather, its state keeps making progress while its semantics remain constant and/or
are refined monotonically.

The Unix equivalent of a controller would be a process that controls another using the
ptrace system call,[citation needed] such as a debugger, or a virtual machine monitor (like qemu
[citation needed]), etc.

8.3.2 A new dimension of metaprogramming

Controllers are arbitrary computations of their own. A controller can be developed in an
arbitrary programming language, in which distinguished input/output primitives are available
to interact with the controlled program.

Since controllers are themselves computations, they themselves each have a controller, that is
itself a computation that has its own controller, and so on. Thus the system maintains for every
computation not a tower but another sequence of controller, controller of controller, controller
of controller of controller, etc. If you think of controllers as puppeteers in the background who
control the puppet computations in the foreground so they perform the show that users wish to
interact with, then it’s puppeteers all the way back, with no ultimate back wall: the system can
always spawn new puppeteers to control existing ones, and even the operating system kernel’s
debugging console is less ultimate than an oscilloscope probing into the hardware.

This adds another dimension to all our computation diagrams, of back-to-front runtime
control of computations, different from either the left-to-right progress of computations or from
the up-to-down concretization of computations (or down-to-up abstraction). There again, users
specify the “front” of that dimension, whereas the “back” is ultimately handled by the system.
Users can always explicitly control a larger “depth” of control in “front”, and add new layers in
the back to handle additional aspects of control.

8.3.3 Shared controllers

A controller can be a stateful computation, and controllers of distinct computations may or
may not share state or otherwise communicate with each other.

Most notably, the multiple computations of a same semantic tower can be handled by the
same controller or by distinct controllers. Indeed, the bottommost computation of a semantic
tower is itself the topmost computation of another tower (with that tower becoming trivial
when the topmost computation hits the “bare metal”); there is thus a tower of controllers,
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that corresponds to the a tower of distinguished current implementations: each “slice” of the
computation has its controller.

An essential reason why several computations may share the same controller is that a finite
computer cannot implement an infinite explosion of ever-branching controllers of controllers.
For practical bootstrapping purposes as well as for the sake of formal well-groundedness, the
system must ultimately have a finite number of computations controlled by a finite number of
controllers. On the other hand, an essential reason why controllers must sometimes be distinct
from each other is that they are processes controlled by distinct sets of people: one company
may provide an application by relying on a development and deployment system provided by
another company that in turns rely on the provider of “cloud” services who uses chips from
a hardware vendor with their own basic virtualization and management layer, backdoored by
their own government’s three-letter agency who rootkits everyone’s hardware; each layer would
have its own controller, distinct from the others, that has its own level of abstraction, its own
state, its own responsibilities, its own release cycle, none of which can possibly be the same as
those of the other controllers.

8.3.4 Dynamic Invalidation of Controllers

When migrating the implementation it controls, a controller has to preserve the topmost com-
putation; but it may arbitrarily abandon any of the computations below, to replace them with
different ones — at least, until it hits the hardware, the cloud virtual machine, or whatever
low-level platform the user is paying, for which the offering is limited, and necessarily changes
slowly compared to software.

Now, when a controller changes the bottommost computation of its implementation, all the
computation slices below become invalid, and so are their own controllers invalidated; new com-
putation slices are created instead, and with them either a new controller or an existing one.
Alternatively, the controller may reuse the same bottommost computation while completely
changing the implementation of the topmost computation; when reusing the bottom computa-
tion, its controller might be reused or recycled, its state preserved or reset; or a new controller
my be created, or some different preexisting controller may be attached.

The set of active controllers thus varies dynamically, with the lifetimes of front and down
controllers depending on migration decisions by back controllers and up controllers.

8.3.5 Controlling Evaluation Strategy

Among the things that a controller can control is the evaluation strategy. Any non-determinism
or underspecification present in the abstract computation can be determined and specified by
the controller when it picks the computation’s implementation — and then re-determined and
re-specified differently when it migrates to a different implementation.

For instance, if the abstract computation is expressed in terms of the lambda-calculus with-
out a reduction strategy being specified, then the controller could pick any reduction strategies,
including but not limited to applicative (eager), normal (lazy) or optimal. Likewise, if the ab-
stract computation is a search in some recursively defined space without a search strategy being
specified, then the controller could pick a depth first along some order, or breadth first search
based on some estimated likelihood, or a mini-max algorithm with alpha-beta pruning, or some
heuristic search based on analysis by a neural network, or any combination of the above, and
more.

The ability to decouple the computation from its evaluation strategy makes it possible
to declare a computation that can be composed with other computations and used in many
contexts such that the strategy only needs be specified when the final overall computation is
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determined, at which point a more adapted strategy can be found than would be possible if each
subcomputation had to pick an evaluation strategy as it was read and immediately compiled
from source code into machine code. Late binding of strategy thus keeps code more declarative,
more modular, and potentially more efficient.

One particular way that a controller can affect evaluation is to never commit to any progress
until the user ends the computation, and instead to always allow the user to rewind the state
of the computation back in time, from where it can be replayed or fast-forwarded. Adding
time travel can thus be done automatically for all computations, including but not limited to
deterministic video animations and audio performances, as long as no costly external side-effects
are involved in replaying (e.g. sending payments, dropping bombs, reusing one-time-pads, etc.).

When thus exploring the evaluation semantics of an underspecified, non-deterministic or
probabilistic computation, the controller may of course change between many evaluation strate-
gies and modify any parameters those strategies use (including any pseudo-number generator
seed), so that different outcomes may be observed in each of many explored branches of the
evaluation. Yet more advanced controllers (e.g. for probabilistic programming) may synthetize
results from many such evaluations. A controller might also use various metrics to measure the
progress of a heuristic strategy or detect lack thereof, to automatically tune some parameters
or decide to switch to a different strategy.

At the opposite end of the spectrum, evaluation strategies can be devised to guarantee
timely termination, ensure better memory locality, minimize use of some resources, avoid leak
of information, or otherwise provide additional security when evaluating code that is not fully
trusted.

8.3.6 Controlling Effects

In addition to the internal evaluation strategy of a computation, a controller can also control
the external side-effects of the computation. Effects controlled include effects as a computation
emits sound or records it, as it interactively displays information to the user, as it exchanges
network packets, etc. Control on these effects include the ability to filter, transform, analyze,
synthetize, create, destroy, replace these effects. The controller can also connect, disconnect and
reconnect the computation’s inputs and outputs. All this control happens while the computation
is running, and without the computation itself being able to know that any of it is happening: to
the fore-computation, these are all interactions with the “outside world”; the controlling back-
computation can arbitrarily define what this outside world is, as long as it never interferes with
the fore-computation’s “inside world” is in ways contrary to the fore-computation’s specified
meaning.

Thus, a computation may “just” specify that some information is displayed, and the con-
troller will arrange for a window to be popped up, a message to be read on a synthetic voice,
a braille terminal to be updated, etc., as appropriate. The computation itself has no control
over this display: most computations wholly lack the capability to talk to any display, network,
filesystem or I/O device whatsoever; they do not possess the relevant capabilities or access
rights, and their code does not contain the relevant libraries or key data. What computations
do is declare their output to their controller, that will be transmitted to relevant displays (if
any) by its controller and the display controller (when applicable).

Controllers are thus very much like operating system kernels, or virtual machine emulators
(e.g. QEMU or MAME), in that they control all the “real” inputs and outputs of the con-
trolled computation, whereas said controlled computation merely declares them and hopes for
the controller to do its job. However, whereas operating system kernels and virtual machine
emulators work at the very low level of abstraction of a CPU or virtual machine, a controller
works at the level of abstraction of the programming language being abstracted; it can therefore
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intercept and implement atomic operations much higher-level than its lower-level cousins could
without costly pattern recognition and speculative strategies to dynamically reverse-engineer
the translation from high-level language to low-level primitives.

8.3.7 Removing Complexity

Moving functionality from programs to controllers enables a tremendous simplification of most
programs; this makes it easier and cheaper to write, debug and document them, but also to
reason about them and to ascertain their correctness or security properties. Programs do not
have to deal with graphical interfaces, do not have to be linked against huge libraries that are
hard to audit, do not have to have unrestricted access rights to storage and I/O subsystems,
do not have to possess access keys to cloud providers, just to interact with the user or safely
persist data.

Now, the astute reader may remark that while programs have been simplified, that the
complexity was moved to these new entities, controllers. Is it then a net gain? Or was the
complexity merely swept under the rug, to come back later with a vengeance? Of course it is
always possible to misuse the controller mechanism to introduce gratuitous complexity. The
question is whether it is possible for developers to use the mechanism for good. And the answer
is that yes, it is possible, for the following reasons.

First, a lot of the controller code base can be shared between most programs, which means
a better pooling of resources to secure a smaller attack surface. Second, that shared controller
code base can itself be divided into many smaller modules, each of them a computation with
limited capabilities, which makes them easier to work with than parts of a large monolithic
computation. Third, the part of control code that is not shared can be reduced to plumbing
that routes data from one computation to another; while it requires some access rights not
available to random computations, this routing code can most usually be kept very simple, and
doesn’t need unrestricted access rights either.

The “dangerous” unrestricted code can thus be pushed back to the controller’s controller,
etc., back to the general purpose user or developer shell shared by all computations. Such
a shell is a necessary component of any system whether it is reflective or not, so the attack
surface has been reduced to the its very minimal size, whereby new access rights need only
ever be granted but with explicit user input and verification. For production code, this “shell”
can also enforce additional security measures such as managerial oversight, review by several
experts, verification by an entire QA infrastructure, alerts if new rights are used or anything
special happens, precise logging of all inputs and their origins, sufficient to reconstitute the
computation, etc.

Move the below to some other section, e.g. in chapter 9? XXX

All in all, for a system of equivalent functionality, no architecture can (by hypothesis)
simplify any evaluation path in the system, since the equivalent functionality means data and
control must flow from inputs (and state) to outputs (and state) through equivalent decision and
transformation trees. But a better architecture can still enable overall simplification (compared
to other architectures) by allowing sharing and reuse of code along new dimensions, by making
easier for developers not to introduce incidental complexity. Less visibly yet perhaps more
importantly, a better architecture can help make each component of the system easier to develop
by reducing the cognitive load required to think about each component; minimizing the number
of interactions possible at any moment, and thus the size of the space that programmers have to
understand when editing any component or assembly of components. Thus, a better architecture
cannot possibly enable more local simplifications than another one, but it can enable better
global simplifications when you consider the entire programming toolchain rather than simply
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the state of the target software at a given time. I argue that a reflective architecture is better
indeed than its irreflective counterpart.

8.4 Implicit Effects

8.4.1 Communication: Implicit vs Explicit

A Reflective Architecture can enable communication at a higher level of abstraction by keeping
most of it implicit. This requires some explanation as to what I mean by implicit and explicit.

In the case of explicit communication, a process specifically names another process, whether
an existing one or a new one to be started; it then opens a communication channel with that
other process, and proceeds to exchange data. Explicit communication does exactly what the
programmers want (or at least say, since there is no DWIM); thus programmers control how
much complexity they will afford; but it requires tight coupling between the programs (and
thus programmers) on all sides of the communication, and is difficult to extend or adapt to suit
the dynamic needs of the end-user.

Conversely, communication with other processes can be implicit: something outside some
process grabs data from it, and makes it available to some other process. This is the case with
copy-pasting, or with piping the standard output of one process into the standard input of
another. Implicit communication is controlled by the users of a computation rather than by
the programmers who write it, and is therefore adapted to their needs. It sometimes require
complex support from the computations that partake in it (or, we’ll argue, their controller);
but programmers don’t have to worry about computations on the other side, as long as they
abide by some general protocol (and keep up with its updates).

Note that implicit vs explicit is a continuum rather than a clear cut distinction: every com-
munication is partly explicit, because it necessarily involves grabbing data that was somehow
published by the first process, the publishing of which wasn’t optimized away; and every com-
munication is partly implicit, because it always relies on something in its context to effect that
communication, in the controller, “at the meta-level” (as known from famous paradoxes, no con-
sistent formal system is perfectly self-contained). Another name for this dimension of software
design is declarative vs procedural programming: In the declarative approach, programmers
describe what is being computed, without specifying how it is going to be computed or how
it will be further processed, which will be determined by strategies at the meta level. In the
procedural approach, programmers describe the steps of the computation without specifying
what is going to be computed, and all the operational semantics remains at the base level.

A Reflective architecture recognizes the importance of both aspects of communication, im-
plicit and explicit. Traditional irreflective architectures tend to have very limited support for
implicit communication, because they lack a general approach (i.e. a meta-level protocol) to
handling declarative programs in general and implicit communication in particular. Thus, sup-
port for implicit communication requires ad hoc protocols that are quite complex to develop,
even harder to standardize, yet ultimately extremely limited in expressive power for the end-
user.

8.4.2 Implicit Communication: Copy-Paste

The kind of implicit communication most visible to end-users in traditional systems is copy-
paste: applications interact with a graphical interface, and may allow the user to either copy or
cut part of a document being displayed; the clipping is then stored in a global clipboard (with
space for a single clip). Another application interacting with the graphical interface may then
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allow the user to paste the clipping currently in the clipboard into its own document. The two
programs may know nothing of each other; as long as they properly partake in the protocol,
they will have communicated with each other as per the desires of the end-user. Copy-pasting
alone provides user-controllable implicit communication between most applications, and is an
essential feature in traditional computer systems.

Now, on traditional computer systems, copy-paste requires every participating application to
specially implement large chunks of graphical interface support. Every application then becomes
somewhat bloated, having to include large graphical libraries; in modern systems these libraries
can to a point be shared between applications, though “version hell” may actually limit the
amount of actual sharing. Applications also have to properly initialize these libraries, follow
their protocols, abide by the strictures of their event loop, etc. They have to be able to negotiate
with the clipboard server the kinds of entities they can copy and paste, and/or convert between
what the server supports and what they can directly handle. This architecture where all features
are implemented at the same level of abstraction contributes significantly to the complexity of
applications; applications are therefore hard to reason about, brittle and insecure. The overall
graphical environment will in turn inherit the unreliability of the applications that partake in it.
And despite all this complexity, often some application will fail to support copying for some of
the information it displays (e.g. an error message); the feature is then sorely missed as the user
needs to copy said information by hand, or falls back to some low-level means of information
capture such as screen copy (assuming the information fits in one screen), or memory dump
(for more advanced developers, assuming suitable access rights).

An interesting exception to the rule of the above paragraph is the case of “console” ap-
plications: these applications display simple text to a “terminal emulator” straight out of the
1970s, at which point all the output can be copied for further pasting. The terminal emulator
thus serves as the back-computation responsible for presentation of the application output, and
handling copy-paste. This comes with many limitations: Only plain text is supported, not
“rich text”, not images. Lines longer than the terminal size may or may not be clipped; or
may have an end-of-line marker or escape character inserted; layout artefacts may be included
(such as spaces to end-of-line, or graphic characters that draw boxes in which text is displayed).
Selecting more than a screenful may be an issue, though you can sometimes work around it
by scrolling the terminal, by resizing it, or by switching to tiny fonts. Standard output and
error output may be confusingly mixed, and interspersed with output from background pro-
grams. Connecting and disconnecting from terminals is possible, but only if the program is
started inside of the screen or tmux utility, at which point the program cannot use any of the
extensions provided by the underlying terminal. Still, the principle of a back-computation to
handle display already exists in some traditional computer systems; its protocol is just limited,
unreliable, baroque and antiquated.

A reflective architecture generalizes the idea that presenting data to the end-user is the
job of a back-computation separate from the computation that displays the data; this back-
computation, the controller, is part of a common extensible platform, rather than of the self-
contained “application” that underlies each activity. The display manager will thus manage
a shared clipboard; this clipboard may contain more than just one clip; it may contain an
arbitrarily long list of clips (like the Emacs kill-ring). Also, clips are annotated with source
domain information, so that the user shall not unintentionally paste sensitive data into untrusted
activities, and may not paste data of an unexpected kind that would cause errors or security
issues. The platform manages interactive confirmations, rejection notifications, and content
filters, that are activated when users copy or paste data.

In these aspects as in all others, the platform can be extended by modules and customized
by end-users. Other back-computations beside the display manager can reuse the same infras-
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tructure: they can use their own criteria to select data from a program’s output; they can use
the selected data for arbitrary computations, and store the results into arbitrary variables or
data structures, not just a common clipboard; they may consult the history of the selected data,
or watch the data continuously as it changes, instead of merely extracting its current value.
The fore-computation doesn’t have to do anything about it, except properly organize its data
so that the external back-computations may reliably search it.

8.4.3 Implicit Communication: Unix Pipes

As another instance of implicit communication in traditional systems, one of the great success-
ful inventions of Unix was the ability to combine programs through pipes : regular “console”
applications possess a mode of operation where they take input from an implicit “standard
input” and yield output into an implicit “standard output”, with even a separate “error output”
to issue error messages and warnings, and additional “inherited” handles to system-managed
entities. A process usually does not know and does not care where the input comes from and
where the output is going to: it may be connected to a communication stream with another
process, to a terminal, or to a file; the parent process setup the connections before the program
started to run.

The Unix parent process here plays a bit of the role of a controller, but this role is very
limited and only influences the initial program configuration. The ptrace utility makes it
possible to control another process at runtime after it is started, but it is very unwieldy, non-
portable, and inefficient, which may explain why it remains uncommon outside its intended
use as a debugging tool. Still, even within this limitation, Unix pipes revolutionized the way
software was written, by allowing independent, isolated programs to be composed, and the
resulting compositions to be orchestrated into scripts written in some high-level programming
language.

A reflective architecture very much acknowledges the power of composing programs; but they
are not so restricted as with Unix pipes. Back-computations enable composition of programs
of arbitrary types, with arbitrary numbers of inputs and outputs all of them properly typed
according to some high-level object schema, rather than always low-level sequences of bytes.
(Note that low-level sequences of bytes do constitute an acceptable type; they are just rarely
used in practice except in a few low-level programs.) These typed inputs and outputs all provide
natural communication points that can be used to compose programs together.

Unlike the typical parent processes of traditional systems, the back-computations of a re-
flective architecture can control more than the initial configuration of applications. They can
at all time control the entire behavior of the fore-computation being evaluated. In particular,
side-effects as well as inputs and outputs are typed and can be injected or captured. Virtual-
ization is a routine operation available to all users, not just an expensive privileged operation
reserved to system administrators.

8.4.4 Explicit Communication

There are many obstacles to explicit communication in traditional systems.
A first obstacle, is the low-level nature of the data that is exchanged with their communi-

cation protocols, which constitutes a uniform obstacle to all communications by making them
complex, error-prone, and insecure. But these protocols are not low-level only with respect to
the data; they are also low-level with respect to communication channels. Traditional program-
ming languages do not support reflection, and communication channels are selected by passing
around handles, low-level first-class objects (typically small integers); this makes it harder to
define and enforce invariants as to how channels may or may not be used within a given process:
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any function having a handle can do anything with it, and handles are often easy to forge; thus
you can’t reason about security locally.

A programming language supporting reflection, while it may express the same low-level
protocols as above, would tend to (fully) abstract over them and instead expose higher-level
protocols, where the channel discipline as well as the data discipline are expressed as part of
the types of the functions that exchange data. Communication channel names become regular
identifiers of the programming language; the usual type-checking and verification techniques
apply to enforce protocol invariants not limited to data format; and the language may let
programmers use dynamic binding to control these identifiers.

A second obstacle specific to explicit communication is that to be a legitimate target to such
communication, a program must specifically implement a server that listens on a known port,
or that registers on a common “data bus”; where this becomes really hard is that to process the
connections, the server must either possess some asynchronous event loop, or deal with hard
concurrency issues. Unhappily, mainstream programming languages have no linguistic support
for decentralized event loops, and make concurrency really hard because side-effects in threads
can all too easily mess things up. Libraries that implement a centralized event loop are ipso
facto incompatible with each other; those that rely on concurrency and a locking discipline are
still hard to mix and match, and to avoid deadlocks they require an improbable global consensus
on lock order when used by multiple other libraries.

The more advanced“functional programming” languages (including Erlang, Racket, Haskell,
OCaml, etc.) support decentralized event loops (the crucial feature being proper tail calls,
and for even more advanced support, first-class delimited continuations), and make it easier by
supporting well-typed concurrency abstractions on top of a functional programming core, which
is a big improvement. But a language that further supports reflection would make it possible to
move these servers completely to a separate back-computation that controls the computation
you interact with; thus the fore-computation can be written as a simple program, with a very
simple semantics, easy to reason about, without any pollution by the server and its complex
and possibly incompatible semantics; yet it is possible to tell it to invoke exported functions or
otherwise run transactions on its state, by talking to its controller back-computation.

A third obstacle specific to explicit communication in traditional computer systems is the
difficulty of locating and naming one of those target processes available to communicate with.
Indeed, inasmuch as communication is explicit, it requires some way to name the party you
want to communicate with: a named process (in e.g. Erlang), a numbered port or a named
pipe or socket on the current machine (in e.g. Unix), a remote port on a named machine (using
TCP/IP), etc. Implicit communication only needs to distinguish between local ports: “standard
input”, “standard output”, “file descriptor number 9”, “the graphical display manager”(including
its copy-paste manager), etc., without having to know what or whom is connected to it on the
other side. Reading (or writing to) a file is intermediate between the explicit and implicit: you
know the name of the file, but not the identity of who wrote the file (or will read it). Naming
a port can also be considered more implicit and less explicit than naming a process.

Now, traditional systems do not have orthogonal object persistence; therefore all their con-
nections and all their names are transient entities that must be reestablished constantly. Tra-
ditional systems also have no notion of dynamic environment; there is a static environment, set
at the start of a process, but it doesn’t adapt to dynamic changes. To track dynamic changes,
programs can query servers, but then the behavior is either completely unconstrained or highly
non-local. You can try to automate this communication, but every program has to handle a vast
array of error cases. In any case, local reasoning about dynamic properties is nearly impossible.

A reflective architecture enables orthogonal object persistence: controllers will transparently
save a computation’s progress to permanent storage, and make it possible to use a stable name to
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access a remote service wherein any underlying connection is established or reestablished when
needed. Controllers can also use dynamic binding as a language feature to control the behavior
of programs or groups of programs in a structured way. How does a reflective architecture deal
with transience, reconnection and unreliability at lower levels of the system? It abstracts the
issues away by introducing a clear distinction between fore-computation and back-computation:
the fore-computation is written in an algebra that can assume these problems are solved, with
persistent naming and dynamic reconnection both implicitly achieved; the back-computation
takes care of these issues. Local reasoning on small simple programs (whether at the fore or in
the back) keeps the overall complexity of the system in check while ensuring robustness.

8.4.5 Explicit Communication: Locally Constant Servers

At the extreme end, opposite to implicit communication, the communication is so explicit that
the system knows exactly what’s on the other side of a communication portal. The inter-process
communication can then be reduced to a static function call, and the listening function on the
other side can often itself be inlined. And in a reflective architecture, this may indeed happen,
automatically: the runtime division into functions, as optimized for execution speed, need not
at all match the source-level division into functions, as optimized for meaningful separation of
responsibilities.

Indeed, when it doesn’t change very frequently, whatever is on the other side of any commu-
nication channel can be considered locally constant; then, whichever back-computation handles
connecting the communicating parties, whether a linker or JIT, can optimize all communication
into function calls, and function calls into more specific instructions; it can then wholly elim-
inate unnecessary marshalling and unmarshalling, and reduce all higher-order functions and
indirections to efficient loops, until a change in the connection or in the code invalidates these
optimizations.

Of course, sometimes the optimization that makes sense goes the other way, transforming
function calls into communication with another process: a process on a CPU might delegate
computations to a GPU; an embedded device when power is at premium, including a mobile
phone, might rather query a server than run an expensive computation itself, etc. Thus local
CPU cycles can be saved whenever cheaper, faster and/or more energy-efficient resources are
available. And there again, a more declarative approach allows back-computations to automat-
ically pick a better strategy adapted to the dynamic program context.

In the end, factoring the code in terms of fore-computation and back-computation is an
essential tool for division of programming labor: The fore-computation developer can focus on
expressing pertinent aspects of the computation semantics; he can write smaller programs that
are simpler, easier to reason about, easier to compose; they can be written in a domain-specific
language, or, equivalently, in a recognizable subset of his general-purpose language with well-
defined patterns of function calls. The back-computation developer can focus on implementation
strategies and optimizations; he has a relatively simple, well-defined framework to prove their
correctness, whether formally or informally; and he can focus on the patterns he is interested
in, while leveraging the common platform for all other evaluation patterns, instead of having to
reinvent the wheel. Thus, whether the source code for some part of an application is modular or
monolithic is wholly independent of whether the implementation will be modular or monolithic
at runtime. The former is a matter of division of labor and specialization of tasks between
programmers at coding-time; the latter is a matter of division of labor and specialization of
tasks between hardware components at runtime.

At every level, each programmer can and must use explicit names each implicitly bound
to a value, to abstract any process, function or object that belongs to another programmer.
By hypothesis, the programmer never knows for sure what the name will be bound to —
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though often that other programmer may well be the same programmer in a different role at a
different time. Yet the overall system in time can always see all the bindings and statically or
dynamically reduce them, efficiently combining all parts of a programs into one. Names allow
to express fixed intent in an ontology where the extent will change (the extent being the value
of a variable, or the text of a function, etc.); they are superfluous from the perspective of a
static computer system, because for a computer system any name beside memory addresses
and offsets is but a costly indirection that is better done away with; names are important
precisely because programming is part of a dynamic computing system, where the activities of
programmers require abstraction and communication across programmers, across time, across
projects, etc.

8.4.6 Declarative I/O

From a programming language point of view, input/output (I/O) primitives can be seen as a
set of functions iopk that each take as parameter some output data type outk, and, with some
side-effects (which we represent as a dashed arrow, but could be expressed as a monad or a
profunctor), returns a value of the input data type ink:

iopk : outk 99K ink
Of course, in case of pure input, the output type is the unit type, whereas in case of pure

output, the input type is the unit type. Using either dynamic types or dependent types, the
index k could be a parameter inside the language, rather than a parameter in the meta-language.
there would then be a function iop that takes the index k (if the set of indices is larger than a
singleton) and a value of type outk, and after side-effects returns a value of type ink. Using type
classes or otherwise subclassing, a single function iop could similarly take a generic class out
that has many subclasses outk, and return a value of generic class in that has many subclasses
ink, though without dependent types, the correlation between the two, if non-trivial, might
then be lost.

Whichever way it is encoded, the data r of k (if needed) and of a value of type outk (if
needed) is an I/O request. The data e of d and the corresponding return value of type ink (if
needed) is an I/O event. The controller intercepts the requests and must (synchronously) reply
to each with a value of the input data type before computation may continue.

In a closed deterministic context, if the controller provides it, the return value can be deduced
from the history of requests, and the interaction can be reduced to a value in the free monad
of I/O requests (i.e. two arrows between given states are equal iff they correspond to the same
history of I/O requests). But in general the controller does not have to provide such a closed
deterministic context. The context it provides can be open in that it depends on communication
within a wider context as provided by the controller’s controller: communicating with other
services on the same computer, or on other machines; input/output with analog devices outside
the world of digital computations; ultimately, interaction with humans and the human world.
The controller can compute the input value with a simulated computation of I/O that may not
be deterministic. It can also have that value depend on the state of the computation, or on the
history of the computation, or on multiple evaluation histories of the computation.

The controller doesn’t even have to continue the computation. Indeed sometimes it can’t,
because there was some kind of I/O error, or because there is no useful and valid value of the
proper type to return in the given context. And sometimes, it won’t, because the computation
isn’t authorized to acquire resources required, or lacks the access rights to enact this particular
action. What the controller may do in these case is modify the evaluation strategy of the com-
putation so it doesn’t have to continue. For instance, the controller could stop the computation;
or it could abort the current code transaction due; or it could automatically restart said trans-
action, and try a few times before it gives up, possibly with randomized exponential backoff
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between attempts. The controller could also schedule a different branch of a non-deterministic
evaluation.

8.4.7 Security Considerations

From a security point of view, note though that a controller can only express and enact access
restrictions within the universe of abstractions it sees. It is always possible that there be
what security experts would call side channels that are not part of the formal universe of the
controller, but part of a wider universe: a typical example is power consumption as observable
in the surrounding physical analog world in which digital devices are implemented, that often
allows an attacker with physical access to a running device to extract cryptographic keys from
it; with local code access, an attacker might also use timers or cache miss counters to observe
other programs or leak information. On the other hand, such invisible side-effects are quite
useful indeed and a security asset rather than risk: for instance, logging, tracing and debugging
can help detect and debug issues. In the end, controllers are tools, and whether controllers are
used for good or evil, whether they are used skillfully or incompetently, depends on he who
wields them.

One way to see things for people familiar with programming language implementations, is
that a controller can do anything an interpreter can do, except this interpreter is restricted to
only evaluating a given program the computation, within a context that binds the high-level
side-effects that it must or must not have. Note that the controller is itself a computation
that is constrained by the access rights and computation obligations that it may or may not
possess besides those associated to the computation it controls. For instance, the controller
might have access to a logging service not seen by the fore-computation, but not to the files
used by the fore-computation (except inasmuch as it may access them as part of implementing
the fore-computation). Or the controller might have full access to some filesystem, and may be
implementing the semantics of file access for the fore-computation.

How much access a controller does or doesn’t have, what effects remain implicit and what
effects become explicit, depend on its own controller. Moreover, the effects explicitly allowed
and excluded when specifying a computation and its successive back-computations may or may
not suffice to ascertain security properties desired of the computation.

But let it be clear though that lies behind or below a computation is out of the control of said
computation, and that a computation cannot be blamed (or praised) when some security issue
lies in this control context or execution context (or when no such issue exists): by definition this
context lies outside the computation, that has no control on it (besides declaring some of them
wholly invalid). Some completely secure bugfree program can be deployed in a flawed context
that makes it completely insecure; or a malware can be deployed in a sandbox or honeypot
that makes it safe to execute and study. Therefore the security properties of a program are
not the security properties of the program in context, and vice versa, though the two may be
related via the properties of the context. A secure service deployment requires not just the
computation but all its back-computations and hypo-computations to be secure, which involves
what is usually considered “operations” as well as what is usually considered “development”.

8.4.8 Dynamically reconfiguration

Every implicit communication becomes explicit communication in some back-computation, its
handler, though it may remain implicit in any given back-computation that doesn’t handle it.
The back-computation that handles a given kind of implicit communication can specify how
that communication is implemented. This implementation can be stateful in ways that the
implicit communication isn’t: for instance, whereas the fore-computation may have a constant
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implicit communication channel, the back-computation may back it have a variable explicit
communication channel; the implicit communication channel could be “the current audio-video
output”, and the explicit communication channel that backs it can be at one time the user’s
cell phone, at another time his laptop or the conference room’s large display, or a “tee” that
outputs to both the conference room’s display and part of the laptop’s display (the other part
having notes and a preview of what comes next). The back-computation may change from one
to the other while the computation is running, without the computation having to notice or
being able to notice.

These capabilities already exist to a point in non-reflective systems; but they are only
available at fixed levels of abstraction, usually relatively low-level, and most applications must
either share the same implicit low-level configuration, or explicitly handle all communications
the hard way. A reflective system makes it possible to affordably modify the configuration of
individual computations or groups of computations at the level of abstraction that matters to
them, at the level of abstraction that matters for these computations, and without having to
share the entire configuration with all other computations, by changing their back-computation
that handles this aspect of their configuration.

8.5 Full Abstraction

8.5.1 Requirement for Migration

For migration to be possible and meaningful, computations must all have a clear opaque bot-
tom: (1) it must be perfectly clear what the bottom is; and (2) the bottom must be totally
opaque, such programs above cannot see below. This requirement is known semi-formally as
Full Abstraction [1].

The reason for the requirement of a full abstraction is that in presence of migration, what’s
“below” can change at runtime; therefore any indirect way that it may be detected (e.g. timing)
is unreliable and temporary: querying at different times may yield different results, or, if done
in the middle of a migration, may yield incoherent results. Depending on those results to remain
constant throughout the computation for results to be correct means that either migration is
prohibited or the computation will yield incorrect results. Hence the requirement.

8.5.2 Full Abstraction Mechanisms

Some languages such as Haskell or ML use strong static typing with parametric polymorphism
to make it possible to express full abstraction over some classes or modules, wherein clients of
those classes or modules cannot observe the implementation of the class or module (short of
using some special reflection API).[citation needed] The parametricity of type-abstraction ensures
full abstraction of the definition of a Haskell type class or ML module over the underlying
implementation of its parameters. On the other hand, an instance of a Haskell type class or ML
module will statically bind the parameter at compile-time and it cannot be changed at runtime.

Racket offers chaperones and impersonators[citation needed] as reflective primitives on top of
which language abstractions can be defined the details of which are opaque to clients at runtime.
Assuming the implementation indeed dynamically prevents users of these objects from accessing
their internal state, and that the implementation indeed fulfills the high-level contract for the
objects without exposing any backdoor, then indeed these primitives enabled the developer to
write full abstractions.

Computability Logic[13] is a general purpose formalism based on Game Semantics, that
generalizes at the same time classical logic, linear logic, and constructive logic. It distinguishes
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several kinds of quantifiers that other formalisms don’t, including a notion of blind quantifiers
wherein the strategies under the quantifier are not allowed change their behavior based on the
value (or type) bound by the quantifier (say matching the value of the bound variable using
a case or typecase), whereas such discriminations is allowed by a regular quantifier. Blind
quantifiers therefore correspond to full abstraction, whereas regular quantifiers correspond to
regular abstraction.

8.5.3 Leaky Abstractions

The opposite of a full abstraction is a leaky abstraction. Most abstraction layers provided in
most programming languages and APIs are leaky from all sides, and it takes little effort to peer
into the innards of the “abstraction”.

Languages like Common Lisp offer primitives to redefine classes at runtime, change the
classes of existing objects, or simply re-bind functions associated to a symbol.[citation needed] Yet
other languages, such as Erlang, enable and encourage a style where messages are exchanged be-
tween mutually isolated processes and some of these processes can be wholly replaced at runtime
without other processes being affected.[citation needed] Correct programs that access functional-
ity through the indirection of provided constructs can indeed benefit from the implementation
behind those constructs being migrated at runtime. However, these languages require the users
of these constructs to be fully abstract with respect to their implementation, but they offer no
mechanism to enforce this full abstraction, which remains the responsibility of both developers
who builds them and use them.

Now, in any language, the underlying implementation could (at least in theory) be changed
under a running program without the program noticing (as long as all indirect runtime data
is modified covariantly). However, most languages do not offer abstraction mechanisms to
embody (much less formalize, much less enforce) the contract specifying what properties must
be preserved by each side of the computation.

A general mechanism to achieve full abstraction is to write domain-specific languages (DSLs),
usually through an interpreter, or (usually with more efforts) through a compiler. However
the barrier to entry to implementing these DSLs is high, whereas the resources available to
develop and maintain these implementations are limited. Therefore, for economic reasons,
these implementations are often of relatively bad quality: they provide little tooling if at all;
their abstractions are usually involuntarily leaky, and of course they do not allow for migration.

Better languages, usually those of the Lisp family, have macros, which allow for the in-
cremental and composable definition of compilers. These macros make for much more robust
abstractions, but usually limit these abstractions to incremental extensions of the base language;
and even these abstractions often leak semantic details in subtle ways that preclude migration
at runtime if programmers use primitives below the abstraction, which these languages cannot
detect or prevent. Racket, a distant descendent of Lisp, has the most advanced support for
defining and supporting domain-specific languages; not only does it provide macros, it also
has a notion of first-class languages, such that old constructs can be prohibited as well as new
constructs are provided; this mechanism does allow for full abstraction, unlike macros alone,
but (at least at this time) not for migration at runtime.

8.5.4 Full Abstraction as Security

Every violation of some abstraction is a security risk and every security risk is violation of some
abstraction: A security risk is when a bad actor may get a program to behave in a way that it
shouldn’t be allowed to do. This subversion of the program’s intent is the same as a violation
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of the abstraction that the program was supposed to provide — had it been well formalized
and correctly implemented.

Therefore, if and when an adverse attempt at subverting the abstraction is detected, security
flags shall be raised; the police shall be involved ASAP and the perpetrators arrested and
prosecuted. An exception of course is when the perpetrators are part of a legitimate penetration
testing team. In particular, customers of hosting services shall reserve the right to test that the
abstractions they were provided with are not leaky (or have professionals test it for them).

Recognizing that any program that interacts with users or other systems uses a language
be it implicitly, and that this language must provide a full abstraction or be a security risk,
is the basis for Language-Theoretic Security[citation needed]: this research domain encourages
identifying what language each interaction uses, and making sure that these language is ap-
propriately restricted, that parsers and printers are strict enough that inputs and outputs are
sanitized, that said parsers and printers are not mixed with application code in a way that
makes it all too easy for abstraction leaks to happen, that evaluators do not have backdoors,
hidden side-effects, buffer overruns, cross-site scripting, unauthorized accesses or unwittingly
Turing-complete computations, etc.

8.5.5 Breaking Abstractions for Greater Good

There are legitimate reasons to break an abstraction barrier, to query the underlying system,
and to use its primitives. Sometimes the primitives provided are semantically incomplete and do
not suffice to express the desired program with all required guarantees. Sometimes they do not
offer satisfactory performance in terms of speed, latency, energy consumption, resource usage.
Sometimes the performance gains from a lower-level approach make a meaningful economic
difference. Sometimes the developer wants to include libraries written in a lower-level language,
or to use instrumentation available at a lower level of abstraction. Sometimes, the underlying
abstractions are themselves leaky or buggy, it might be necessary to detect that this is the case
so as to provide a better tighter abstraction. There might be more reasons.

Now, the right way to break the abstraction barrier is to keep the top computation as
abstract as possible, and express it in a DSL that abstracts away (hides) all these features,
optimizations, bugs and leaks. Then, that DSL can itself have multiple implementations de-
pending on the underlying computing basis, and these implementations indeed can and should
take advantage of available features and optimization opportunities while bridging over under-
lying leaks and bugs. Thus, the top computation can be implemented using a hypocomputation
that uses a particular implementation of the DSL that uses knowledge of what’s “below”, yet
it can always be migrated to a different implementation of that DSL, because that DSL itself
provides a full abstraction, even though it may be implemented on top of computing bases that
don’t.

Importantly, even though the emotional motivation was for the developer to break an ab-
straction, the result in the system is a more robust abstraction. What happens is that a
computation formerly defined in terms of an abstract system A, was redefined in terms of a
different abstract system B extended or modified with a suitable DSL; and that DSL is itself
explicitly defined in terms of a more concrete system C, though in so doing it may reuse most
of an implementation of A with C. The notional “breaking of the abstraction” corresponds to
extending the “vertical” scope of the specified computation from A down to C: the new com-
putation is specified in greater details than the previous one, in terms of a lower level virtual
machine; migration to different low-level virtual machines remains possible thanks to the for-
malization of that alternate abstract system B, that can have implementations not just with C
but also with other low-level machines D, E...
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8.5.6 Activity Sandboxing

In a reflective architecture, proper sandboxing ensures that activities may only share or access
data according to the rules they have declared and that the system owner agreed to. In particu-
lar, applications that are not meant to communicate with anyone but the user (e.g. regular web
pages) will not be able to to communicate with anyone but the user. Proper sandboxing also
means that users need not be afraid of getting viruses, malware or data leaks via an activity
(though he should still avoid running code suspected of being malicious, just because there may
be inadvertent bugs or wanton backdoors in the software platform he is using).

Systems with a reflective architecture always run all code in fully abstract sandboxes, as
controlled by a user-controlled meta-program. There is no supported way for code to distin-
guish between “normal” and “virtualized”machines. All machines are “virtualized”, that what’s
“normal” in a reflective architecture. If the system owner refuses to grant an application access
rights to some or all requested resources, the activity has no direct way to determine that the
access was denied; instead, whenever it will access the resource, it will be suspended, or get
blank data, or fake data from a randomized honeypot, or a notification of a timeout delay, or
whatever its back-computation is configured to provide; the system owner ultimately controls
all configuration. If the application is well-behaved, many unauthorized accesses may be opti-
mized away; but even if it’s not, it has no reliable way of telling whether it’s running ”for real”,
i.e. whether it’s connected to some actual resource or to some cheap emulation thereof.

Allowing code to make the difference would be a huge security failure; and any time a
monitor in a production system recognizes the attempt by a process to probe its environment
or otherwise break the abstraction, a serious security violation is flagged; upon detection, the
process and all its associated processes are suspended, up to the next suitably secure meta-level;
also the incident is logged, an investigation is triggered, and the responsible software vendor
is questioned. — Unless of course, the people responsible for the break in attempt are the
system’s owners themselves, or penetration testers they have hired to assess and improve their
security, which is a recommended practice among anyone hosting computations controlling any
important actual resources.

Note that proper sandboxing at heart has nothing whatsoever to do with having “kernel”
support for “containers” or hardware-accelerated “virtual machines”; rather it is all about pro-
viding full abstraction, i.e. abstractions that don’t leak. For instance, a user-interface should
make it impossible to break the abstraction without intentionally going to the meta-level. You
shouldn’t be able to accidentally copy and paste potentially sensitive information from one
sandbox to the next; instead, copy and pasting from one sandbox to another should require
extra confirmation before any information is transferred; the prompt is managed by a common
meta-level below the sandboxes, and provides the user with context about which are the sand-
boxes and what is the considered content; that the user may thus usefully confirm based on
useful information — or he may mark this context or a larger context as authorized for copying
and pasting without further confirmations.
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Chapter 9

Architectural Benefits

9.1 Performance Improvements

9.1.1 Migration-Time Optimization Opportunities

The benefits from a reflective architecture are many. However, the easiest to sell is probably
performance, since it speaks directly to the bottom-line of users of large computations or of
small computers. Indeed, a reflective architecture allows for a wide class of runtime optimiza-
tions that are not available in non-reflective systems: a reflective architecture introduces the
notion of migration-time, distinct from either compile-time and runtime, yet interspersed with
runtime, that corresponds to migration events. With this migration-time come a lot of opti-
mization opportunities. From the point of view of software implementation techniques, these
migration-time optimizations can be seen as a generalization of the now well-established JIT
compilation[citation needed].

When migration happens, a lot may be known about the state of the computation, that is
not known at compile-time and therefore cannot be used for static compile-time optimization:

• The configuration data for the current computation, including parameter values, logging
level, etc.

• The dynamic state of the current computation, including size and usage statistics of
various entities, specialized knowledge about currently active data and control structures,
symmetries of the problem at hand, etc.

• The evaluation context of the current computation, including the exact variant of under-
lying hardware being used, the exact resources available, the exact versions of each library
used, the exact addresses of each function and variable linked, the exact types or control
flow graph used in the overall computation, etc.

• The context of other computations that the current computation is interacting with,
including all the above for each of these computations, whereas they are hidden behind
abstractions at compile-time.

The information available at migration-time has both a wider scope and more precise knowl-
edge than is available at compile-time, and thus enables optimizations that are inaccessible at
compile-time: First, what is typically considered as “global” information at compile-time can
only encompass the current computation and be blind to any specific context, whereas what is
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considered as“global” information at migration-time can span all the active computations on the
computer system. And second, compile-time only has access to statically known information in
all possible contexts, whereas migration-time has access to dynamically known information in
the current context. Migration-time still has less information to use than available at runtime,
since e.g. variable values can be modified more often than a migration happens.

9.1.2 Migration-Time Optimization Constraints

The migration-time optimizer may use all the information discussed above; however, as restric-
tion, all its optimizations must be reversible with respect to the declared computation semantics.
In other words, it must always be possible to observe the state of the current hypo-computation
being executed as implementing the hyper-computation specified by the user (or a computation
at any level of abstraction in-between), and from there to migrate to a different implementation.
As usual, the specified abstract system may be defined up to some set of acceptable rewrites,
and optimizations may cause the concrete computation to be observed as any of the acceptable
rewritten variants of the computation.

Thus, local invariants of the current implementation cannot be assumed to be global in-
variants, since they can be invalidated by the next migration; (unless of course they are global
invariants indeed, but then the compile-time optimizer will probably have exploited them al-
ready before the migration-time optimizer gets a chance to do anything with it). This restriction
is quite constraining indeed: by hypothesis, some irreversible optimizations will have to be es-
chewed that could have been applied if no observability were needed because the low-level
implementation were known to never change. On the other hand, it only takes a safepoint
once every so many iterations of a tight loop to achieve observability, so the constraint isn’t
a significant runtime burden in the kind of code where performance really matters. What the
constraint does, mostly, is to forbid “puns” that lose information by identifying entities that are
distinct at the high-level but could have been merged at the low-level if observability weren’t
needed.

Thus for instance, if at migration-time it is found that some variable a is always equal to 2
in the context of the new implementation, then any use of variable a can be replaced by a use of
the constant 2, and the information that this is a constant can ripple through the computation
as constant folding propagates it through the program. Thus, if the computation includes a
function of the form x 7→ x + a then the function can be compiled as if it were x 7→ x + 2.
Yet some event might cause migration to yet another implementation where a may not be 2
anymore, at which point this function’s implementation would be migrated as if it were still
of the form x 7→ x + a, as distinguished from a function of the form x 7→ x + 2 obtained by
other means. If the language allows for function comparison, comparing the two functions must
therefore keep returning a signifier of known falsity, even though the current implementation of
the two functions is identical.

By contrast functions specified as x 7→ x + 2 and x 7→ 2 + x and maybe even x 7→ 1 +

x + 1 might very well be the very same function under commonly specified sets of acceptable
rewrites, at which point the compile-time optimizer would make them equal, and observing them
might return the same object — and the migration-time optimizer wouldn’t have anything more
to do there. Now, note that merging these functions might lead to changing the error message
generated by an overflow event (if applicable); therefore the declared semantics that allows
such rewrites corresponds to the notion that (at least some) errors are fatal and the message
they produce is irrelevant in the abstract — even though of course the implementation will do
its best to make them relevant in the concrete. Alternatively, the rewrite happens after (or
independently from) error handling being expanded into regular checks to intermediate results,
and other rewrites allow to eliminate, fuse, move or otherwise transform the error checks.
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In practice, the constraint against losing information may matter most in cases where some
bindings are declared as observable and cannot be dropped nor replaced by a more directly
actionable summary. To allow optimizing them away, the specification of the operational se-
mantics of the higher-level programming language would then have to somehow declare lexical
bindings as not directly observable, or otherwise explicitly allow optimizations that drop infor-
mation about them.

9.1.3 Migration-Time Optimization Strategies

When implementing an abstract program P using some virtual machine V, the compiler from P
to V cannot go below the abstractions provided by V. Compile-time optimizations can only rely
on details visible by V; they cannot go lower-level, they cannot peer inside bindings established
by blind quantifiers, and more generally cannot break the full abstraction for V.

However, the migration-time optimizer deals with implementing V using a lower-level con-
crete computation C; it is effectively a compile-time optimizer for implementing V using C.
And that implementation may very well break down the abstractions of V into those of C; it
can see inside the internals of entities provided by V, and peer at the values bound by what
to V are blind quantifiers. The migration-time optimizer will be able to use all the contextual
information available and discussed above to efficiently implement the computation.

Thus, not only can locally constant variables be replaced by their values, but constant
propagation and partial evaluation may lead to further local simplifications in the resulting
hypo-computation. However, to preserve observability, these simplifications must not involve
use of these variables past the next safepoint. Now, removing extraneous safepoints is a valid
strategy to enable optimization across them; however, in doing so, observability to some further
safepoint must be preserved: for instance, it is permissible to eliminate all the safepoints within
a tight loop, after unrolling the loop a few times for small enough loops, but there need be
a safepoint after only so many iterations of the loop, so it remains possible to observe the
computation in a reasonable amount of time.

Now, in a reflective architecture, configuration is often handled by back-computations: the
back-computations control which computation are connected to which other computations or
to which I/O devices, which window of which display is in use, what is the volume of the sound
or the layout of the keyboard, which configuration options are enabled in which instance of
each program, etc. The user (or some automated program) may then modify the configuration:
e.g. he move, hide or resize a window, connect the audio output to a different device, change
the volume, selects a different keyboard input method, pick a different color scheme, tweak
persistence parameters, modify the data processing pipeline, etc. Whenever some configuration
change invalidates some generated code, the back-computation stops the fore-computation in
an observable state, then the old code is replaced or even updated in place (if all code users
are migrated at the same time) with newly generated or modified code, all the while preserving
the running state of the computation. Since code worthy of being compiled is run frequently,
whereas the human-controlled events that cause configuration changes are infrequent, it is often
a big win to generate code specialized to the current configuration. Thus, pixels will be blitted
directly to the correct video memory location with the correct color depth and cpu optimiza-
tions using the specified color palette; bits will be banged directly to the correct device without
extra buffering and copying; the correct settings will be used and assumed all around; proper
synchronization or suitable optimism will be involved in committing transactions; processes will
(usually) communicate directly without involving unnecessary marshalling, context switching,
copying and unmarshalling; the resulting combinations of higher-order functions are special-
ized into tight loops, based on provided argument functions even if these functions come from
different processes with different owners and different lifetimes, etc.
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Note that there are often good reasons not to let computations directly communicate with
others or access devices, notably relating to software capabilities and hardware capabilities. As
of software capabilities, this device or process may have strict trust requirements that do not
allow that particular user to generate code against it from that code base using that compiler,
and conversely. while it might be possible to find an acceptable combination that allows for
direct access, that combination might be slower than just keeping things in separate processes
communicating via a trusted middleman (that nevertheless need not be a runtime “kernel”
since it needs not be the same unique master process for all pairs of communicating processes
and devices). As of hardware capabilities, depending on the number of physical computing
units available, on the geometry of the data interconnects, it may make sense to generate code
for a software pipeline of programs in such a way that it maximizes usage of the hardware
pipeline; merging all code for a pipeline into a big loop rather than a series of smaller loops
might be bad for cache locality as well as usage of available processing resources; while com-
munication between processes does incur communication costs in marshalling, bit-banging and
unmarshalling data, this cost is sometimes less than the benefits of better hardware usage (then
again sometimes not).

There again, deferring these decisions to back-computations allows for implementation
strategies that take into account resources actually available to the computation’s owner at
the time of the computation request and as the computation keeps running in a changing envi-
ronment. A static implementation could not adapt to a variable execution context from user to
user, machine to machine, day to day, hour to hour, minute by minute. Note that this is what
the Borg scheduler or Kubernetes scheduler do at the level of granularity of virtual comput-
ers within a distributed system[4],. We argue that the same principle can be generalized and
automatized at a finer level of granularity.

9.1.4 Up to Infinitely Faster

The greatest performance savings happen when non-trivial aspects of a computation can be
wholly optimized away.

For instance, any kind of explicit interprocess communication requires checking, unparsing,
context switching, copying, parsing and checking again. When the processes belong to the same
user and are part of the same trust domain, there isn’t any reason to go through all these costly
steps; they can be wholly optimized away.

When in some user interface a window is hidden from view and no process is watching its
contents, then these contents need not be computed at all; all that needs be computed is a
record of a recipe to display the window should its contents be shown again. Thus, for instance,
when watching a video clip, if the user decides to hide the window or turn off the screen, all
the CPU-intensive activity of decoding and scaling the video can be eschewed, leaving only the
sound to be decoded; all the video player has to do is keep track of where in the video to resume
decoding and display should the user decide to turn the screen back on. On an embedded or
wearable device that is being used as a music player, this can not only save a lot of battery life
for the device, but also spare the user some serious burns.

In an extreme case, a computation that has been permanently disconnected from any
positively-desired output or side-effect can be wholly garbage collected. In his computational-
philosophical novel “Permutation City”, Greg Egan speculates about what it means for an
artificial life simulation to thus permanently disconnect from the outside world while preserving
(or indeed increasing) the richness of its internal state. Has this simulation ceased to exist,
or does it continue to grow and prosper forever, having been implemented in the most perfect
way possible? We do not have to answer the philosophical question. It suffices to note that
in a reflective system it is indeed possible to automate the fact that such simulations are run
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infinitely faster than in traditional systems.

Most cases are less extreme, yet it is not unusual that when combining computations and
display the results for the user, some of the final and intermediate results are not used, whereas
some of the intermediate computations partly cancel each other. In all these cases, the contex-
tual late compilation of code can achieve greater simplifications than possible with either ahead-
of-time compilation or runtime interpretation. Of course, simplifying code away requires that
the compiler should be able to detect that some code is indeed unused. This is much more easily
done when said code is written in a pure lazy functional language like Haskell[citation needed]; but
it is possible even in messier programming languages, as long as the programs remain short
or that the side-effects are somehow contained; and separating code into fore-computation and
back-computation, hyper-computation and hypo-computation, etc., is precisely a way to keep
the relevant software components short and to control their side-effects.

9.2 New Features

Obvious to observe yet less obvious to assess among the benefits of First-Class Implementations,
are the many software features that they enable. Unlike higher performance, that is evidently
worth the costs it reduces while for achieving the same results and the ability to reach previously
unatteignable goals, it isn’t straightforward it is to see what any particular new feature is worth.
Is it just an expensive gadget that only looks nice the first time you see it on display? Or is it a
change with a deep and broad impact on how things will thereafter be done? Yet, though it is
hard to evaluate these changes, it is still pretty obvious to observe that they exist: some features
were indeed enabled (or weren’t), and ultimately, new such features are how better software
can qualitatively change the life of users rather than improving it in a merely quantitative way.

The features enabled by First-Class Implementations were already described in chapters 5
to 8. The contents of these chapters will not be repeated, but here are some remarks on the
significance of these features.

Some software features enabled by First-Class Implementations can be properly considered
novel, such as runtime navigation of the semantic tower (see chapter 5). However most of the
discussed features are novel on their own, since they each have been implemented before without
a Reflective Architecture; still, the combination of these features may itself be novel, and perhaps
more importantly their composability : First-Class implementations offers a unified framework
in which these many features can be expressed, composed, combined, reused, shared, with which
these features may build synergies that may not be available without such a framework.

First-Class Implementations make some features cheap and universal when they were pre-
viously expensive and reserved for specific uses, or sometimes even prohibitively expensive or
impossible without heroic efforts, such as Migration (see chapter 6) or various Code Instrumen-
tations (see chapter 7). Yet, while migrating processes from one machine to another while it’s
running is the most spectacular immediately understandable application of First-Class Imple-
mentations, the features that promise a deeper change in the way people write software might
be some that have existed for decades in some systems but never could previously be incre-
mentally added to other systems: Orthogonal Persistence (see section 7.3), and Erlang-style
Resilience (see section 7.4).

In any case, First-Class Implementations offer a promiseful approach to implementing a
lot of “non-functional” requirements of software that impact not just the quality of software
written, but the way software is written.
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9.3 Robustness: Separate program and metaprogram

9.3.1 Code Quality by Any Other Name

One less obvious benefit of First-Class Implementations is Robustness. Here by Robustness
we will attempt to at least partially formalize the notion of Code Quality, including Readabil-
ity, Writability, Understandability, Reasonability, Debuggability, Maintainability, and whatever
other “-abilities” and “non-functional requirements” code may possess that people do not usu-
ally know how to usefully measure and compare. The notion is of course partly subjective, as
what is easy to understand for one person may be hard to understand for another and vice
versa, probably depending on intellectual factors both innate and acquired, the latter includ-
ing personal knowledge as well as cultural practices. Yet, assuming that at least a few people
in a development team can master the concepts, we will argue the contributions, limitations
or potentials that a reflective architecture brings on the table that a traditional architecture
doesn’t.

Now, even taking into account subjective factors, even most practitioners have trouble evalu-
ating the Robustness of a body of code, much less predicting what effects on Robustness certain
practices will have. Indeed, evaluating Robustness requires thinking at a different scale than
is required for the day-to-day development or operation of software; furthermore, predicting
Robustness requires imagining potentials of future development and the counterfactuals of al-
ternative development histories in addition to looking at the results of actual past development.
Non-practitioners cannot even fathom Robustness, because in addition to the above, it is an
abstract concept in a domain that is foreign to them.

Robustness, when present, is not felt: it consists in met expectations and other non-events.
However, all will feel the consequences of the absence of Robustness, when software breaks down
badly, its maintenance costs balloon, or some crime or other catastrophe makes this absence
all too obvious. Yet when these consequences are felt, the emergency of dealing with these
consequences in the short term also makes it a wrong time to think about Robustness in the
long run. Therefore the right time to think about Robustness is now: not every minute, not
necessarily every day, but probably every week, every month and every year. It must be part of
every development team’s concerns, and for each scale at which software design and planning
happens, people who understand it at that scale must be involved.

Now, when trying to judge a software architecture from the point of view of Robustness, the
question asked is: how easy or hard does the architecture make it for developers to write software
that is adapted to the domain with which the software interacts in the world at large, and then
for developers to maintain this software by modifying it when that domain changes, including
changes in adversarial ways? And the main contribution of an architecture is usually to keep
things simple and easy to reason about in terms of the concepts of its domain of interaction.

9.3.2 Defining Robustness Negatively

Robustness isn’t directly felt, but its absence is — this makes it hard to formalize what Ro-
bustness is. By contrast, this makes it relatively easy to define what Robustness isn’t, and to
identify entire categories of badness the presence of which constitutes the opposite of Robust-
ness. As regards the contribution of software architecture to Robustness, this means looking at
the kinds of systemic software failures that software architectures may lead to.

There are many ways that an architecture can fail. A first failure mode, the complexity
failure, is for the architecture to introduce too much extrinsic complexity: much more complex-
ity than necessary, that developers have to deal with, which can arbitrarily increase the cost
of using the system to deal with the intended domain. In the extreme case, developers can
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spend a large part of their time dealing with issues created by the system itself, to the point
of being distracted from addressing those of the intended domain. A second failure mode, the
conceptual failure, is for the architecture to be overly simplistic and fail to adequately describe
the intended domain, or to even enable users to properly express the required concepts. Users
then have to each develop their own workarounds and extensions (if possible at all), and have
difficulty cooperating with each other because the system does not let them communicate using
the adequate concepts. Sometimes the conceptual failure turns into the complexity failure, as
users eventually develop convoluted ways of expressing the concepts they need, but then have
to deal with all the baggage of expressing these concepts on top of a system that didn’t allow
their direct expression. These failure modes are of course on a continuum: there are infinitely
many degrees of extrinsic complexity that a system can introduce on some aspects of the soft-
ware, and infinitely many degrees of oversimplification and conceptual inadequacy that it can
simultaneously have on other aspects of the software.

A different failure mode, the implementation failure, is for the architecture to offer adequate
concepts to its users, but to fail to implement them properly: the abstraction provided by the
system may leak, and developers will then have to address a large number of edge conditions
and weird failure modes; the leaks might then cause frequent system crashes, or worse, they can
be as many security vulnerabilities that expose users to attacks; users must therefore constantly
work to bridge the unfilled gap between the system’s promises and what it actually delivers.

There again, this third failure mode can be based an intrinsic or an extrinsic failure: An
extrinsic failure is when there is nothing wrong with the system’s concepts, that could logically
be implemented right; but the work wasn’t done properly or wasn’t completed, and the system
was used at a time that it wasn’t ready to be used; thus users have to face the current failures
of the implementation, but these failures can be fixed and with enough efforts, at a fixed
(though maybe large) cost, the implementation can be completed and repaired. An intrinsic
implementation failure is when the gap between the system’s promise and what it delivers is not
just unfilled but unfillable; the technology to fill it doesn’t exist yet, or is even impossible. At
one extreme, the system could offer a button“do what I mean”, and while there is a tautological
adequacy of concepts between “what I mean” and what I mean, there is an essentially unfillable
gap between this concept and what an implementation of it via computer system can offer:
the problem is not only AI-complete, but me-complete — even with intelligent slaves at my
service, I cannot escape the responsibility of living my life, of defining, communicating, refining
and enacting my desires as I interact with the world, etc. Similarly, a button “make this
software robust” could have a perfect conceptual fit with the developers’ desire for Robustness,
but no automated contraption could ever take any randomly written piece of bad software and
magically rewrite it in a conceptually clean way that fixes the bugs while preserving the ultimate
intent of it.

There are also degrees to which the implementation may or may not be good enough. At
one end of the spectrum, the improperly implemented concepts may be illusions, but illusions
that remain stable as the world moves, and enable planning and contracting between multiple
parties. The abstraction provided might then provide a great benefit well worth sustaining
the cost of the implementation failure: the cost of maintaining the illusion when possible, and
otherwise the cost of dealing with its inevitable break-downs. These illusions are actually self-
sustaining phenomena, continually justifying their existence by their benefits after costs. At the
other end of the spectrum, the illusion is a lure, a waste of time and energy that distracts from
more worthy endeavors; the resources sunk into trying to maintain it exponentially increase
the overall suffering from the deferred but looming disaster that will occur when the illusion
inevitably breaks down.

In all cases, whether these two extremes or in-between, the notion of implementation failure
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remains relevant: it helps understand the underlying fragility of these phenomena should the
underlying infrastructure fall apart, and also identify the limits of applicability of these phe-
nomena, the domain of validity and invalidity where the illusions are or are not worth the cost of
their maintenance — and to whom (for sometimes, those who decide and benefit are not those
who suffer and pay the costs). Furthermore, thinking those domains of validity may require
considering the interactions with the considered systems at various scales in time and space:
the interaction of one user with one machine in the few seconds or minutes of a usage session;
the day to day dynamic between developers and software, between developers and other devel-
opers, between developers and users; the month to month economic incentives between users
and providers; the long term market prospects as the economic situation evolves.

9.3.3 Comparing Architectures

Two pieces of software that try to do more or less the same thing can be compared with respect
to many dimensions including Robustness. Now how can software architectures be compared in
terms of Robustness, when they don’t embody two fixed collections of programs with pairwise
comparable purposes, but instead frameworks, contexts and traditions inside which to write
very different programs with different delineations for software features? The effect of using
those respective architectures can be compared in terms of the overall cost of software necessary
to deliver given functionality with the same quality, or conversely, the amount of software of
given quality that can be delivered for given cost — we’ll call this latter quantity the semantic
intensity of the code at given quality (inasmuch as it is quantifiable or at least conceptually
so). The cost here can be measured in any relevant metric: dollar amounts demanded by
established consultancies, size of code to write, hours of development required, years of training
for developers, etc. Can this cost be expected to shrink or to grow in the long run when making
one architectural choice over the other?

Different architectures will by definition divide the work to be done in different ways; it
is therefore important to understand that the cost metric that matters is total cost. Indeed,
it might be that one architecture divides software in smaller tasks than the other one, yet
still increases costs, because there are more of these smaller tasks, that these additional tasks
introduce extra communication costs between components, extra coordination costs between
developers, extra rigidity that prevents adaptation when the world changes. We argued some-
where else [citation needed] that this was the case for microkernel architectures, that by needlessly
dividing kernels into runtime components communicating through the microkernel with limited
protocols, vastly increase runtime and development costs as well as system rigidity, at little to
no benefit compared to using programming language abstractions that provide effect isolation,
software modularity and type safety at compile-time rather than runtime.

On the other hand, even without changing the total size of the problem, a better architecture
can improve the situation by factoring it in a way that humans can be better organized to deal
with it. For instance, one software architecture (or lack thereof) might have each developer
(or at least each group of developers) write all aspect of all software as generalists; a better
software architecture might allow for division of labor such that parts of the software can be
shared between many developers, so it only has to be reasoned about, written and debugged
once; an even better software architecture might enable specialization of tasks, whereby each
piece of software is further written by an efficient specialist rather than an inefficient generalist,
so it is more proficient people doing the reasoning, writing and debugging of each piece of
software. By constrast, a bad software architecture might add so much incidental complexity
that the system is too big and too hard for any human (or any automated system) to reason
about, or to simplify. Code will then accumulate that is ever harder to understand, leading to
ever renewed bugs and security vulnerabilities that no one is competent to fully eliminate.
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To ensure that the skills and incentives of the many cooperating developers are both aligned
and relevant, then comes the question of how developers are funded and how they are kept
accountable for their work. What we call “software architecture” at this point might then
also include aspects that are more “social” than purely technical, such as licensing models (free
software vs proprietary software vs secret software), funding models (software vendors vs service
providers vs user consortia), management models (waterfall vs agile vs other models), etc. We
will discuss those aspects in the next chapter 9.4, inasmuch as a Reflective Architecture has
such social implications.

Note that architectural effects are only visible at a large enough scale. Writing a “hello
world” test, a schoolbook exercise, or even a short program, may not exercise much of the
differences between two architectures — or it may exercise superficial features of how well
the libraries readily available on one architecture (and mastered by the programmer at hand)
compare to those readily available on the other (given the ignorance of them by the same
programmer) without telling much on the long term prospects of either architecture. To compare
architecture requires thinking in terms of software large enough to require cooperation between
many developers (or, then again, methods through which software may be kept small enough
not to require such cooperation; and also how these two concerns can sometimes be at odds, as
some methods might be detrimental in one way and beneficial in the other).

For instance, the expression problem [citation needed] challenges programming languages with
the task of allowing the extension of existing programs, to either allow the handling of more
data structures by the same functions, or the processing of the same data structures by more
functions, or both. This challenge is only relevant because indeed programs have to evolve,
sometimes to handle more cases, sometimes handle more elaborate computations on the same
kinds of data. The two complementary classic approaches to solving this expression problem, ad
hoc polymorphism and parametric polymorphism [citation needed], are each more or less relevant
depending on which kind of evolution happens more frequently — and combining the two of
them nicely is relevant when future software evolution will not predictably always be of the
same one of those two kinds.

Now actual measure of large scale consequences of architectural choices big and small are not
generally affordable if possible at all. Yet it is possible to think rationally about such choices to
make better choices than random. What more, even “making choices at random” presupposes
a random distribution, and thus a framing of the questions that matter. Framing the questions
in a different way, based on a different paradigm [9], can lead to very different distribution of
questions and of “random” answers. He who controls what questions are considered relevant
may have more influence on the outcome than those who make the individual decisions based
on the paradigm. And especially so without the means to make much in terms of large scale
experiments, it is very important to have good theories on what are architectural questions that
matter.

9.3.4 New Opportunities and Their Cost

A trivial but ultimately bad argument in favor of a reflective architecture is that this architecture
only adds new ways of factoring software without removing existing traditional ways of writing
the same software; therefore, goes the argument, at best the architecture will improve the
situation of code by offering some better ways of writing software, and at worst it will leave the
situation unchanged as the same ways can be used. In other words, because it is an extension
of existing architectures, it is better.

The argument however is flawed because it neglects the overhead costs of using the archi-
tecture itself: the cost of writing all the infrastructure, the cost of sticking to the discipline of
observability, the mental cost in terms of additional concepts for the developers to be aware of,
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the cost of dealing with many distinct additional ways of doing the same thing and mentally
or programmatically bridging the impedance mismatch between the new variants of software.
When all these overhead costs are taken into account, the architecture must actually bring
noticeably better new ways of writing software, or else there is no benefit to match these costs
— not to mention the costs of change. A discussion of the effect of reflection on Robustness
must therefore study the consequences of actually using the reflective features, and not cop out
by merely mentioning the system’s potential for not using them.

On the other hand, it is also important to realize that most of the costs involved in using a
reflective system are indeed fixed costs, plus maybe a very small factor overhead when developing
software and when running it. Therefore, if the architecture does offer sensible benefits on some
wide enough classes of problems, then its costs can be justified at least for software involving
those problems. What more, in the case of a reflective system, these cost are further reduced
(or sometimes negated) by the previously discussed performance enhancements, which makes it
quite plausible that reflective features may come “for free” (or be paid for already), unlike what
would be the case if random useless features had been grafted onto an existing system.

9.3.5 Separations of Meta-concerns

A reflective architecture based on first-class implementations can increase robustness by en-
abling well-defined separations of concerns that are not possible without them: the separa-
tions between hyper-computation and hypo-computation, between post-computation and ante-
computation, between fore-computation and back-computation.

Each of these separations can indeed increase semantic intensity. On the one hand, they can
reduce overall code complexity for a given set of features, by sharing large parts of meta-level
code (i.e., hypo-computations, pre-computations and back-computations) between computa-
tions that would otherwise have to duplicate the same functionality the hard way: they can
share underlying runtimes, compilers, controllers, that in traditional systems would be inlined
in each of the programs and hard to impossible to separate from these programs. On the other
hand, these separations enable division of labor along lines of responsibility that allow for higher
specialization: the developers who write those meta-level components can be more productive
writing that code than being application developers, whereas application developers can be
more productive using those meta-level components than by inlining their effects by hand (for
which they would make a lot of mistakes).

What more, this separation of concerns encourages the development and use of domain
specific languages (DSLs) that serve as interfaces between those various base- and meta- lev-
els. And each of these DSLs is an opportunity to reduce extrinsic complexity, and instead
provide a language that is exactly fit to the purpose of developing the application at hand
— and maintaining it as its evolves. Note that DSLs are already possible without first-class
implementations, with a lot of the same benefits.

But a reflective architecture based on first-class implementations can also increase the se-
mantic intensity of DSLs, i.e. both increase the benefits of and reduce their costs: On the one
hand, the reflective architecture makes it possible to write generic tooling to simultaneously
support all DSLs: debuggers, static analyzers, dynamic profilers, and all the usual code in-
strumentations that are so hard to generalize without first-class implementations. On the other
hand, a reflective architecture based upon well-defined semantic relationships between first-class
implementations makes it easier to reason about code, compared to not using reflection at all,
or compared to using reflection without explicit such relationships.

What more, even when there is indeed an intrinsically unbridgeable semantic gap between
intensional concepts that humans want to manipulate and extensional realizations of these
concepts by metaprograms, a reflective architecture, by increasing the semantic intensity of



9.3. ROBUSTNESS: SEPARATE PROGRAM AND METAPROGRAM 167

computations, displaces the equilibria for these illusions from one extreme to the other: to-
wards more useful, self-sustaining phenomena and fewer harmful, self-defeating mirages. That
means that more DSLs can be written as language abstractions that serve as contracts between
user and implementers, such that users can safely ignore the implementation details while im-
plementers can affordably maintain a bridge across that unfillable gap between human intension
and machine extension.

9.3.6 Robustness-enhancing features

The previous subsection was about how reflection improves semantic intensity, and how this by
itself benefits Robustness. But a reflective architecture not only brings generally simpler ways
to factor code; it also enables features that specifically contribute to Robustness — once you
paid the entry cost of using the architecture.

A reflective architecture offers the ability to navigate the semantics of software at multiple
composable levels of abstraction along the hypo/hyper dimension and to instrument code with
logging, debugging, access control, etc., all at the level of abstraction that each user cares about,
and thus with minimal overhead in terms of complexity of use. While the ability to log, debug,
control access, etc., obviously exists in non-reflective architectures, it usually requires special
purpose cooperation or modification of the code being instrumented, which is expensive and
intrusive, and/or special tooling that is only available at one level of abstraction, that of a
well-supported programming language. A reflective architecture makes this instrumentation
universally available at all levels of abstraction, by requiring all the “language” implementation
at each level to abide by some minimal declarative protocol from which the other abilities can
be deduced in a generic way.

A reflective architecture also offers the ability to dynamically control the effects of software
at multiple composable depths along the fore/back dimension, once again at the depth of control
that each user cares about. Users can thus dynamically disconnect and reconnect computations
from the services they depend on, persist sessions and multiplex of I/O (including between
heterogenous kinds of terminals), access services locally or remotely, automatically restart failed
computations, use scripts and checks to automate interaction with their programs including
test them, etc. Universal control tools are pervasively available at all depths of control, all
levels of abstraction, etc. This contrasts with the special-purpose variants of control programs
available in non-reflective systems, that each only work at one level of abstraction, usually
quite low-level: for instance, user interface connection, deconnection and reconnection happens
and in terms of pixels for VNC or RDP, or of characters for GNU screen or tmux; what
more users or developers must choose before the program is started whether the interface with
be textual or graphical, mobile or “desktop”, etc.; when disconnecting and reconnecting from a
different computer, that interface will be either too little or too much considering the computing
power of the available terminal, the communication bandwidth and latency, the resources of
the developer, etc. More generally, user-directed evaluation control in non-reflective systems
typically does not usefully compose, and cannot be programmatically scripted; conversely, what
scripting languages do exist do not usually offer good interactive control interfaces, and still
no good composition mechanism for independent software developers to combine their works:
virtualization happens at the level of CPU instructions with qemu or VirtualBox; users of
encryption and authentication must deal with binary files (GnuPG), point-to-point connections
(SSH) and manual key management; various database servers complexify the programming
model with a completely different, non modular, language.

More classically, a reflective architecture offers the ability to generate programs at multiple
composable stages of evaluation along the ante/post dimension, as always at the level of staging
that users care about. Users can thus dynamically issue queries that will be properly typechecked
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and compiled, interact with the code and modify it, partially evaluate code to specialize it to the
information they are interested in, optimize code based on actually observed data patterns and
user requests at runtime, use the full power of a large interactive environment while running code
on small embedded devices, precompute shared computations, etc. A reflective architecture is
based on the assumption that one man’s compile-time is another man’s runtime — sometimes
the same man at different times — and does not try to artificially force a single such division
onto programmers and users, unlike traditional systems.

In all these cases, a reflective architecture specifically enhances robustness by:

• Offering developers an interface at the level of abstraction they care about, rather than
forcing them to think in lower-level terms than they would like, which exponentially
decreases the developers’s ability to reason about programs and write them without in-
troducing bugs.

• Offering developers composable abstractions, so they can divide work in smaller chunks
that can each be taken care of by a specialist, instead of forcing developers to tackle larger
tasks at once in most parts of which they have limited expertise.

• Removing arbitrary barriers in the development process, whereby developers are required
to make decisions overly early and cover all cases in advance when they can’t know the
situation of the users, whereas users are prevented from making decisions and are left
without recourse if their case wasn’t covered.

9.4 Social Architecture

9.4.1 Better Division of Labor

The main benefit we envision for a reflective architecture is in how it enables a different social
organization of users and developers, around more modular software: indeed the new ways of
factoring software that it enables not only increase semantic intensity and robustness, but do so
by dividing tasks in more ways not possible without reflection. This division of labor calls for
its own specialization of tasks among developers, with different interfaces between roles. The
finger-grained components made possible by a reflective architecture will be the smaller units
that people evolve, distribute, share or configure independently from each other (or at least with
loose synchronization), thus affecting the social relationships between developers, and between
developers and end-users. This social change is simultaneously the greatest potential benefit
of reflection and the greatest hurdle to its adoption. It will probably take a generation for the
required paradigm shift to happen in academia then in the industry.

9.4.2 Applications as Rigid Towers

Without reflection, each team of developers delivers an “application” that provides the entire
semantic tower from the user-visible top to the “bottom” provided by the operating system.
An application once delivered is essentially rigid monolithic block that is very hard to modify,
instrument or control in any of our three reflective dimensions, at least not by regular developers,
much less so by normal users.

That application is typically delivered as a single “executable” file, or a “bundle” of a many
files including one or several “executable” files, “libraries”, and many “data” files — or as an “in-
staller” executable that installs a bundle on the target machine and possibly further configures
it, or a “package” file for use by an existing installer. Once installed, this application embodies
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the entire semantics of the software, in all possible execution contexts, on top of the operating
system. The operating system itself is a collection of a “kernel” that multiplexes abstractions
for low-level resources, a semi-standard set of system “libraries” that can be included in the
semantics of the application, some semi-standard executable “utilities” for developers and ad-
ministrators to bootstrap their semantics, and some semi-standard set of background “services”
that applications can interact with.

Virtualizing the “bottom” of an application and doing something with it, while possible,
requires advanced system administration skills: who wishes to do that must maintain a virtual
copy of an entire operating system, with suitable behavior for any imaginable request to the
system; and that system is a growing collection of hundreds of haphazard “interfaces” accumu-
lated along decades of accretion with backward compatibility as a strong constraint, even to bad
design. Thus in practice virtualization is an expensive ad hoc technique used to save costs on
large scale deployments; even then it consists in bulk replication of the same mostly unchanged
pyramid of semantics. The complexity of it all makes it very expensive or even out of reach as
a means for regular developers to achieve reflective control along the foreground/ground axis.

Developers do not have the resources to manage (much less develop and debug) the combi-
natorial explosion of potential behaviors that users may want to specialize, of instrumentations
that users may desire to enact, or of computational effects that users may desire to control. Yet
developers must explicitly encode in their applications all the combinations thereof that users
will actually be able to use. They cannot afford to support more than the common cases. They
have to choose sensible defaults that will work for the majority of their potential users; they
may also offer a few configuration options to satisfy slightly more demanding users, but even
then have to keep these options limited or become unusable due to the complexity of under-
standing what the options do and how they interact (yet without having access to the code).
Some major applications may have a large enough user base to themselves become platforms
that developers may extend in some way, using plugins or some kind of extension language. but
unless these platforms themselves follow a reflective architecture, this only reproduces the same
architectural issues, albeit at a smaller scale in more specialized more manageable setting, but
also one where the skill pool is also reduced.

9.4.3 Components

With reflection, there is no more fixed bottom for software. All software by construction runs
virtualized, just not at the CPU level, but instead any and every level of abstraction that users
are interested in, up to the language in which the software is written (and maybe even higher
if the software can e.g. be statically or dynamically analyzed). Control and instrumentation
can also happen in terms of any of the above abstractions, under the control of the user, with
an infinite variety of parameters (and sensible defaults), while developers do not have to care
about any of the aspects that can be left to such controllers. Therefore, developers do not have
to care about persistence and other “non-functional requirements” (so-called), and users do not
have to be frustrated because their requirements are not served by applications. Orthogonal
persistence, infinite undo, time-travel debugging, search, interactive completion, and all kinds
of other services that can be implemented once as natural transformations are made available
“for free” to all programs, at all levels of abstraction, from the lowliest CPU instructions to the
loftiest DSLs.

Developers will thus have to write less code; their code can have higher quality and wider
applicability; and users will get to enjoy software that has more functionality, and that is
better adapted to their needs. But more importantly, this will happen because developers
do not deliver “applications” anymore, that embody entire rigid semantic towers of software
from the user interface down to a low-level “operating system”. Instead, they will be delivering
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“components”, that implement only the original aspects of the software project, while the other
aspects are managed by other components connected to the component at hand via reflection.

No such component delivery platform currently exists, but the closest is probably Emacs
packages [citation needed]: the editor is extensible using the programming language Emacs Lisp,
and “packages” may define arbitrary new functionality, that depends on other packages, and
may share state through variables, “buffers”, buffer-local variables, hooks called at various
points, “frames”, property lists associated to various global objects, new global objects in new
variables, etc. The way these components interact isn’t quite reflection the way we propose:
instead of defining for each component an explicit higher-level DSL that other components can
interact with using meta-computations, Emacs packages all use the same somewhat lower-level
language, and interact through data decorations and code hooks that roughly implement what
background control might have been. Large applications such as web browser and document
authoring systems also often have“plugins”,“extensions”or smaller“applications”that enable an
ecosystem of software components that do not each have to define an entire tower of semantics.
However, these components tend to be written in languages more rigid than Emacs Lisp, and
the extension points through which they can interact tend to have to be pre-determined by the
main application.

9.4.4 Bricks of Semantics

If an application is an entire tower of semantics, a component is more like a single brick, or set
of bricks combined with each other — the application being divided along three dimensions of
metaprogramming. For instance, a given component might be in charge of file selection, and
would be used by all end-user visible activities, instead of every “application” having its own
file selector.

With the traditional approach, each application expend will expend the efforts of a non-
expert (for most do not have file selection as their field of expertise, and neither should they
have it) on this task that is decidedly not the core business of the application. Most of the
time, that programmer would be a junior programmer; it is only worse if an expert at something
different is wasted writing that part of the application. Of course, libraries exist that provide
this functionality, but it’s never exactly what you want, it is usually lagging far behind in terms
of features compared to what the best applications offer, and then if the application is still used
a few years later, it will have had its file selection capability frozen from many years earlier.

With a reflective architecture, user-visible activities would not include a file selector but in-
stead request a file from their controller, that would delegate the task to the system’s configured
component for file selection. Which file selector is used is moved out of the responsibilities of the
“application” writer into that of the system administrator who selects, installs and configures
the components. A handful of worldwide experts would compete to provide the very best file
selectors, that would be shared across all applications. Instead of thousands of bad file selectors
being written for each of thousands of applications, a small number of file selectors will rival
to be shared by the thousands of equivalent activities across the board. A much better use of
talent is made possible where there was previously waste, both saving a tremendous amount of
resources and achieving much higher quality.

There is of course nothing specific to file selection in the arguments above: similar cir-
cumstances apply to all kinds of behaviors, that can now be achieved using a few modular
components written by experts, instead of a lot of monolithic pieces of code written by as
many non-experts. Of course, for the equivalent of an application to be produced, not just
the individual components, but an assembly of those components must be developed, after the
components were modified or adapted to follow mutually compatible interfaces. The interfacing
and assembly of components are also kinds of work that require their own expertise, and those
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kinds of work too will presumably also be done by experts now that a better division of labor
allows for specialization of tasks. Thanks to a reflective architecture, a lot of software develop-
ment can therefore go from amateur to professional. And the key to this change is the ability
for some programs to define their activities in terms of requests to a background controller.

Move the following“meta is more than fancy base” subsections in some previous section.

9.4.5 Controllers are more than Servers

Requesting a file or some other value from an outside controller can be seen as the existential
dual to what lambda terms are for universal quantification: whereas a λ-expression provides
to its context the proof to a universal proposition, an ε-expression requires from the context
a witness to an existential proposition. Thus the form ε(x : T )P (x) returns an element of
type T that satisfies proposition P. For instance, the type could be that of a file, and the
proposition ensure that the file is a picture in a supported format, etc. Instead of a file, the user
may be able to supply an arbitrary stream, such as one obtained by connecting to a network
service or by running some arbitrary generator. The programmer may specify the most general
abstraction that his program is ready to deal with, and not have to care about how the user
comes up with data that fits the bill; this data can be handled separately by a suitable controller
back-computation.

A variant of ε-expressions can explicitly pass a number of arbitrary expressions as additional
parameters, to be used as “hints” by the controller when determining which witness to return:
ε(x : T )P (x)|a, b, c. Depending on the variant of ε, the controller may also have implicit access
to the lexical or dynamic environments and other components of the virtual machine state, and
use them when choosing a witness; from the point of view of the fore-computation, it behaves
like an oracle, that can be cooperative or adversarial or have whatever purpose of its own.

Access to more information about the fore-computation means that the controller can po-
tentially do be configured to do a better job in a wider variety of contexts. Access to less
information means that the controller has tighter security properties and cannot be compro-
mised to do things it shouldn’t do. The strictest case, where only explicitly passed parameters
can be used, is akin to the traditional case of making a request to a server in a separate process.
But the whole point of controllers is that they are not limited to such service calls, and may
instead be specialized to the activity at hand, use and keep private information.

One may use actors [citation needed] and capabilities [citation needed] to model which activity
has access to what information, which is interesting not only for security purposes, but also for
architectural design. Controllers can also be modelled as actors to represent how they interact
with each other, or how they internally divide their computation in sub-activities that each
only cares about a subset of said information. A controller common to many computations
can combine the information in all of them for various beneficial interactions (such as caching
common subcomputations). A set of controllers private to each computation can ensure that
each computation’s state remains private. Some multiplexing controllers can ensure that some
kinds of state can be shared between many computations but only in safe ways, whereas other
kinds of state remain private. Therefore, as opposed to the simplest model of disjoint individual
actors, the reflective actor model has the notion of actors being implementations of other actors,
of actors controlling one or multiple other actors, etc. The semantics of one actor may thus
include and refine the semantics of these other actors — and the inclusion relation does not define
a tree, since actors can be refined along several dimensions, and controllers, implementations
and generators can multiplex or delegate multiple parts of their semantic contributions to as
many other actors.

All in all, background control by concurrent actors with various capabilities interacting with
high-level messages offers a model to think about security in a way that is largely independent
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from the detail of computations. The model is useful as long as the system can affordably be
divided into relatively small components that interact according to type signatures specified
for the effects being controlled. And in that model, each background controller has intimate
knowledge of the computations it controls in a way that traditional servers do not and cannot
have; and each controller can itself be dynamically controlled and migrated, individually. These
are improvements over much of traditional monolithic application architecture both in terms of
expressiveness and of security.

9.4.6 Controllers are more than Effect Handlers

Another traditional concept that is similar to background controllers, but ultimately different,
is effect handlers.

For instance, in Common Lisp, a program can signal arbitrary condition, and dynamically
setup handlers for these conditions. When a condition is signalled, the closest handler is invoked,
that can take arbitrary actions and conclude by aborting the computation through a non-local
exit, raising the condition again to be handled by the next closest handler, restarting the
computation that failed, or continuing the computation after taking suitable corrective actions.
This latter option, which most other languages with exception facilities still can’t decades later,
makes it possible to use effect handlers to implement background control of sorts; however,
in contrast to our background controllers, Common Lisp handlers do not possess a builtin
mechanism to return a value; background control could still be expressed using side-effects to a
special variable, and these implementation details could syntactically abstracted using macros.
But then again, background control could also be implemented more directly using dynamic
binding of special variables (a feature there again still missing from most other languages,
decades later) to hold a (chain of) effect handlers capable of returning values without side-
effect.

Other related works, in a statically typed setting, include instances of a Haskell monad (and
particularly a “free monad”) [citation needed], ore more recently, handlers for “extensible effects”
[citation needed]. Using monad typeclasses in general, computations can be divided between regu-
lar “pure” computations and computations that have extra effects, as statically handled by the
specific monad instance used; dynamic control can be achieved indirectly by using a particular
monad instance that explicitly maintains a dynamic chain of handlers for the effects. Extensible
effects behave similarly to what such a dynamic monad instance would. These most directly
express the equivalent of background control.

One difference, however, between background control and such effect handlers, is that the
background controller is considered distinct computation, and can be dynamically migrated
while the computation keeps running and without modifying it. Thus for instance, the controller
could be handling a text terminal, and be replaced by a controller handling a mobile phone, then
a PC console, and the fore-computation would be none the wiser. Migration is not generally
possible using traditional effect handlers. To achieve it, the handlers, in addition to having
basic safe point and migration primitives, would have to preserve the full abstraction offered by
the declared effects: they would have to record the entire sequence of effects while only applying
the rewrites and simplifications permitted by the declared interface; they are not apply further
simplifications only valid for the current controller and lose information about the declared
state of the interaction — or then again they may only apply such simplifications to their own
separate copy of this state.
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9.4.7 Metaprograms are more than Libraries

In traditional systems, the way for multiple computations to share some behavior is to use
either libraries or servers. Servers we saw above. Libraries are collections of code (functions,
variables, classes, etc.) that can be statically linked into a program at the time it is compiled,
or can be dynamically linked into it at the time it is started and initialized, before it runs.
Importantly, the semantics of a library is imported into that of the program before it actually
runs, and becomes part and parcel of said semantics from then on. You cannot unlink a library
then relink a different version after the program has started running: its effects are pervasive
in the entire computation and intimately affect its meaning.

With a reflective architecture, metacomputations offer a different way of sharing behavior,
where the semantics of the metacomputation does not change the semantics of the computa-
tion1). The semantics of the base computation are included in the metacomputation, rather
than the other way around as in the case of libraries. Therefore, a same computation can run
with very different metacomputations, but only with nearly identical libraries. Of course, if you
adjust the scope of your semantic specification to include not just some base computation but
also some of its metacomputations, then indeed these metacomputations and the libraries they
use tautologically become part of the semantics of your wider computation. And if the meta-
computations do not make use of any meta-level features, this might be equivalent to modifying
the computation to use libraries; but in general metacomputations can do more than libraries
can — as long as the specified semantics for the base computation is preserved.

Because (by hypothesis) it does not change the base computation’s semantics, a metacom-
putation can be modified at runtime — there will be no observable change as far as the specified
aspects are concerned, yet may be arbitrary changes for other aspects. This is unlike libraries,
that must be fixed at compile-time (for static libraries) or load-time (for dynamic libraries).
Thus, if picture processing is defined in terms of background computations, picture formats
can be defined or updated at runtime, and all activities will be able to use to use the new
formats, even activities that were compiled and started before the new formats were defined.
And unlike delegating to a server, this does not require an expensive RPC roundtrip for every
operation down to drawing a pixel, but can be compiled to code just as efficient as if a library
had been used — because indeed, a library will be used underneath by the back-computation,
and requests to it will be properly inlined before runtime; but as far as the fore-computation
is concerned, the images remain opaque objects handled through the back-computation, and
they can be observed as such. The back-computation can even change the representation of the
underlying objects on the fly and the fore-computation will be none the wiser: for instance, the
back-computation could adopt a better compression algorithm for all pictures, or cache variants
scaled at various reference resolutions.

A library can only see what is in its scope, and the arguments explicitly provided, and doesn’t
have access to capabilities not specifically granted to it (although in unsafe languages such as
C or C++ this latter guarantee might not mean anything at all; even using safer languages
such as C# or Java, actually private capabilities require taking many extra steps to secure the
global class scope and restrict access to the reflection API). However, once it has access to some
capabilities, the library can otherwise do pretty much anything with whatever information it
has access to (within its language’s specified type constraints if any). A metacomputation can

1This might seem paradoxical in the case of a generator ante-computation, that creates and defines the
semantics of the post-computation; but actually, this is just as trivially true for ante-computations as for
hypo-computations or back-computations: given the fixed version of the computation, its static source code and
dynamic state, it does not matter which of two distinct ante-computations generated the same post-computation,
anymore than which of two distinct hypo-computations implement it, or which two distinct back-computations
control it: by very hypothesis of they generating, implementing or controlling the same computation, these
distinctions have been erased as far as the computation’s declared semantics are concerned.
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see all the semantics of the base computation at all levels of scoping; however it cannot change
anything about their specified semantics; it can only refine theses given semantics. It can make
use of any and all of the security capabilities that the base computation possesses, but can only
use them in the very same ways that the base computation will use them during its execution
whichever metacomputation is being used.

A library strictly follows the control flow of the caller (inasmuch as it is specified — which
may admittedly not be so much in language like Scheme with first-class continuations). A
metaprogram can change the control flow of the base computation — within its semantic con-
straints; it can use make use of backtracking, multiple retries, concurrency or sequentialization,
it can try multiple possibilities in disjoint or interfering parallel universes, it can use optimistic
evaluation, or it can contrive worse-case scenarios, etc.

A library can only affect the computation when called, or as a residual side effect of having
been previously called. A metaprogram can affect parts of the base computation that don’t
explicitly make requests to it; for instance, it can log every binding or binding modification to
every variable, to e.g. achieve Omniscient Debugging (aka Time-Travel Debugging).

Metaprograms are thus entities very different from libraries, or servers, or effect handlers.
None of these concepts is supposed to replace the others. Together they offer multiple distinct
dimensions along which to factor code, divide labor and specialize skills.

9.4.8 3D Slicing

Factoring a computation along three previously neglected dimensions of reflection opens new
way of organizing software. A reflective architecture promises simpler software, with less devel-
opment effort, more code reuse, easier proofs of correctness, better defined access rights, and
more performance — but also a different social organization.

For instance, a computation generating video and sound can be well separated from the
software that plays it to the user. The sound generation can be a simple component, that can
combine sounds at a high-level combining notes and samples, or at a low level setting ampli-
tude levels; either way, the computation doesn’t need to know anything about sound devices,
user interface (translated in 60 languages), storage of samples, filesystem configuration, music
licensing, remote sound devices, synchronization with a movie generator, pausing, recording,
accelerated or slowed down playback, skipping, adjusting the volume, mixing sounds, filtering
sounds, disconnecting and reconnecting I/O devices, multiplexing and demultiplexing, etc. All
these aspects can be handled by suitable metacomputations, at runtime, by different compo-
nents. What more, the sound generating computation does not have to be restarted, much less
recompiled, for a change in any of those other aspects to happen. The output can be redirected
from a personal mobile device to a desktop computer, to a conference room video projector,
to a broadcast with a varying number of subscribees, to a multiway network conferencing ses-
sion, and back, without the person writing or distributing the sound generator having to know
anything about it.

This separation also enables I/O redirection and other effects without the application even
having to know about it, or the developer having to prepare for it, besides respecting the ob-
servability protocol. The user can seamlessly control the I/O using a uniform interface for all
I/O generators. There are no “video viewing applications”, but video viewing components that
work across all activities of the system. Similarly for all kinds of components, from text edit-
ing to multiparty conversation tracking, from automated translation to online shopping, from
logical constraint solving to music indexing, etc. Software functionality can be developed, dis-
tributed, maintained, updated, serviced, exchanged, in components that are much finer grained
than traditional “applications”. Development services and software products can therefore be



9.4. SOCIAL ARCHITECTURE 175

exchanged in finer grains, with fewer specialists of higher and narrower expertise each touching
more people than with the traditional armies of generalists.

Just because components can be written at a finer grain doesn’t mean that it will always be.
There are a lot of reasons why large components will keep getting written, if only inertia, which is
already an important reason: people will keep writing software the way they do until competition
forces them out of it; large bodies of existing code will be too expensive to break down into
small pieces (though some pieces may be easy to chip away) and instead will be wrapped in
virtualization layers until they are made obsolete by a new generation of software redesigned
from scratch. The transition to a reflective architecture, if it happens, will be incremental,
and will offer backward compatibility with traditional architectures through various adapters.
These adapters may actually prolong the viability of some traditional software that is made
runnable in contexts in which it couldn’t function before.

Finally, even though a reflective architecture may promote developing software in smaller
pieces, there will always be a market for people who take many such pieces and assemble them
together for end-users. Most end-users don’t care to do the assembly by themselves, and don’t
have the skills to do it even if they did; they want to focus on whichever tasks they are good at.
Therefore, Software distributors will carefully select and configure coherent sets of components,
and polish the interfaces with some consistent distinguishing design. Application developers
may deliver end-user devices that are locked down for security purposes. Game designers
will bring together comprehensive experiences out of complete configurations of components.
Software development will be less monolithic than it currently is, yet inasmuch as there is
market demand for one-stop-shops in software, there will still be people providing that smooth
experience to end-users.
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Chapter 10

Conclusion

10.1 Retrospective

10.1.1 The Take Home Points

This thesis was divided in four parts, in which the most salient points I made were as follows:

• (Part I, Chapter 2) I showed how an elementary use of Category Theory, provides a simple
and useful way to unify the many existing models of computational semantics. I did not
have to invoke any of the higher-level abstractions in the Categorical toolkit, though they
remain available to who knows how to use them.

• (Part I, Chapter 3) I formalized a notion of Implementation as the opposite of (Abstract)
Interpretation, itself a partial functor between two categories of computation. I showed
how many common concepts can be expressed in this formalism using simple bicolored
diagrams. my one innovative concept was a notion of observability that generalizes the
notions of safe-points and PCLSRing.

• (Part II, Chapter 4) From the previous formalism, I used the Curry-Howard Isomorphism
to extract a protocol to deal with first-class implementations at runtime. The key property
of observability enables “climbing up” the semantic tower of a computation and thence
navigating and modifying this tower, while the computation is running.

• (Part II, Chapter 5) I explained how the previous formalism and protocol allowed to
reinterpret a lot of known techniques in Computer Science, in new productive ways, and
suggest how to unify their implementations.

• (Part III, Chapter 6) I proposed a generalized notion of Migration, which offers a prin-
cipled, general and composable approach to understanding and solving a lot of problems
currently considered hard and attacked with ad hoc methods.

• (Part III, Chapter 7) I described how the Categorical concept of Natural Transformation
yields a general approach to thinking about Code Instrumentation techniques. It brings
the promise of universal code instrumentations simultaneously available for all languages
at all levels of abstraction, when they are currently ad hoc tools available just for the few
languages.
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• (Part IV, Chapter 8) I anticipated how these new runtime reflective capabilities both re-
quire and enable a new kind of software architecture, a reflective architecture. A reflective
architecture explicitly deals with towers of implementations, using background controllers
along another semantic dimension of runtime reflection.

• (Part IV, Chapter 9) I argued that a reflective architecture opens new dimensions of
modularity, that will positively affect how code is written, not just in terms of Performance
and Features but also in terms of Robustness, and Social Organization.

10.1.2 A Subtly Coherent Story

This thesis went through a variety of domains, from formal methods, to programming language
runtime implementation, to various metaprogramming techniques, to software architecture.
There might not obviously seem to be a strong connection between these domains; and yet,
each part of my thesis only makes full sense in the context of the other parts:

• My contribution to formal methods is quite modest, my use of categories being not so
original a priori and quite trivial a posteriori. My main innovation is to conceptualize
a generalized notion of “observability”. What makes this property important is that it
enables the runtime navigation through computational semantics without which the rest
of the thesis would seem to be impossible magic.

• My runtime protocol by itself might look like an arbitrary mathematical construct; the
formalism in the previous part makes it both possible and necessary. The fresh point of
view it offers on existing phenomena might be a mildly interesting intellectual exercise;
the techniques in the following parts make it relevant as a framework to think about new
general solutions to previously ad hoc problems.

• My notions of Migration and Code Instrumentation in isolation might look like they are
handwaving away known hard problems. The groundwork of the previous parts make them
realizable approaches to building composable general solutions to these hard issues. And
the following part provides a framework within which these approaches are manageable.

• My discussion of a Reflective Architecture and its consequences, on its own, might sound
like abstract nonsense. The formalisms and techniques in the preceding parts give it solid
foundations. And it offers them a hope of relevance in the world at large.

The interrelations between the four parts of the thesis make it hard to raise both under-
standing and interest when explaining any of them independently from the others; and the need
to present them together raises the barrier to entry to making them known. Therefore a great
many thanks and congratulations to you for being my readers!

10.1.3 Underlying Theme

The work I present makes sense in the context of Software Architecture. It matters for Pro-
gramming in the Large, but not in the Small [citation needed]. That is, large and/or long-running
projects will gain from better factoring of software into independent components that can fit
nicely together yet can evolve at different paces. The same concerns are not as relevant for
small and/or short-term projects not meant to survive the winter.

A lot of projects aim at long-term success. Those that ignore the principles of good soft-
ware architecture will find, after the funding is secured or the product is launched that they
have accumulated technical debt whereby bad initial architectural decisions incur constant high
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maintenance cost and cripple future development. Meanwhile, those that fail to even aim at
long-term success will probably not find it anyway.

On the other hand, a project will not live to enjoy its good software architecture if it failed
to reach the point where it can be funded and/or launch into self-funding. It is therefore
important not to pay too high a price for software architecture, and accumulating technical
debt is a valid strategy. Some people recommend even planning for technical bankrupcy of
your code base by making “throwing one away” [citation needed] part of the schedule. Meredith
Patterson [citation needed] even went so far as planning to write a prototype in one language and
the product in a different enough language to ensure the first experimental codebase will not
be kept longer than it makes sense.

In any case, when eventually comes the time to write a solid system that resists the test of
time, then it matters to pick a good Software Architecture, one that inherently Scales to large
amounts of code, written and maintained by a large number of developers, running on a large
number of machines, in a large number of different configurations. That is when Semantics and
Reflection both matter — to keep the codebase manageable, and increase its semantic intensity
(i.e. reduce the amount of code and number of developers needed to achieve the desired effect, or
achieving formerly unreachable feats given the same amount of code or number of developers),
by offering Modularity along relevant dimensions. And that is thus when this thesis, that
reconciles Semantics and Reflection, matters.

10.2 Related Works and Opportunities

TODO: Fill in sections about related works, with relevant citations, particularly for works not men-
tioned in previous chapters, and/or of wider relevance.

10.2.1 Formal Methods

The first part of my thesis touches the domain of Formal Methods for specifying the semantics
of programs and proving their correctness.

10.2.2 Computational Reflection

The second part of my thesis touches the domain of Computational Reflection. Open Imple-
mentation, AOP, Towers of Interpreters...

10.2.3 Migration, Code Instrumentation, etc.

The third part of my thesis touches a wide variety of techniques that can be simplified or gen-
eralized using principled computional reflection: Garbage Collection, Migration, (Orthogonal)
Persistence...

10.2.4 Software Architecture

The fourth and last part of my thesis touches the domain of Software Architecture. Virtualiza-
tion, distribution...
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10.3 Future Works

10.3.1 Challenge

The ideas presented in each part of this thesis of mine remain largely unimplemented. I see that
as opportunities, and challenges. I may or may not manage to live up to all these challenges,
but maybe I can convince some of you to take some of them.

Regarding to the first part of my thesis, the challenge is to complete a formalization of First-
class Implementations. One obvious approach is to use Coq or some other tool for mechanized
reasoning, that may already possess a model of Category Theory, in which these partial functors
and their properties may be defined. Type classes could be used to express the fact that many of
these properties or conjunction of properties are composable, and thereby induce a category of
the implementations satisfying them. Such a formalization can then be used as meta-theory to
study various compilers, runtimes and programming platforms. A yet further challenge would
be to meaningfully extend the formalization to include the formalization platform itself. What
useful semantic models can be developed that include reasoning as part of the development
platform, and new developments as part of the reasoning? Can the loop of self-reference be
closed in a way both consistent and useful? [citation needed]

Regarding the second part of my thesis, the challenge is to add First-class Implementations
to your development platform. And here, “platform” can mean many things: a programming
language made reflective; an integrated development environment growing more principled;
an operating system aiming at greater robustness; a system shell looking for better ways to
orchestrate activities; a distributed system monitor trying to reduce complexity. Here, instead
of starting from pure theory and extending your platform towards more reflection, you’d start
from a platform that already has some reflection out of practical necessity, and restrict this
reflection to follow good principles that allow it to do more for less in a more robust way.

Regarding the third part of my thesis, the challenge is to factor your software into finer-
grained reflective components. Use the three dimensions of reflection to simplify your software:
ante/post computations so you can write your software in terms of domain-specific languages
[citation needed]; hypo/hyper computations so you can think about software at several levels of
abstraction, at each moment using universal code instrumentations at the level that matters;
back/fore computations so you can dynamically control the evaluation context of your compu-
tations without corrupting the computation itself. Then you may enjoy the increased semantic
intensity, and the simplification, robustness, security, etc., that it brings.

Regarding the fourth and last part of my thesis, the challenge is to build more efficient
communities, markets, ecosystems, based on these new ways to factor software. Not just isolated
programs using cool techniques, but shared platforms that leverage them into a new way to
practice computing. [citation needed]

10.3.2 The Meta-Story

In the end, though I do claim to make a technical contribution with this thesis, I aim at
something more ambitious: a change of point of view about Computing.

The point is not to dismiss the relevance of existing points of views in their respective
domains, but to offer a complementary, wider point of view, that is relevant at scales where
Architecture matters, for software systems that aim to survive in the long run. The reason
that Semantics and Reflection had to be reconciled is because on the one hand, the schools of
thought that further Computational Semantics tend to focus on puzzles in well-defined fully
formalized setting — wantonly ignoring the wider mostly informal context in which their for-
malisms compete, pushing away any human factors that cannot be neatly squared into boxes,
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including the need to adapt to dynamic change in an evolving world. On the other hand, the
traditions of coding that further Computational Reflection tend to focus on what is artistically
expressive for the ones, or what is immediately practical for the others, usually with little re-
spect for what makes sense, can be reasoned about, be maintained in the long run, and be
kept safe and secure. Yet these two approaches are in the end complementary, and both are
necessary for large projects to succeed. I consider that my ultimate contribution is on how to
think these complementary aspects together, an use them in harmony, rather than continue the
current multiple personality disorder of only thinking one at a time while ignoring or denying
the other.

I have started a blog specifically about this change of point of view, where I purposefully
avoid digging too deep into technical details as I describe software architecture in a dialogue
with a Computing Practioner from an alien race, the Houyhnhnm (pronounced “Hunam”), of
equine appearance: Houyhnhnm Computing http://ngnghm.github.io/

http://ngnghm.github.io/
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