
ASDF 3, or Why Lisp is Now an
Acceptable Scripting Language

(Extended version)

François-René Rideau
Google

tunes@google.com

Abstract
ASDF, the de facto standard build system for Common Lisp, has
been vastly improved between 2009 and 2014. These and other im-
provements finally bring Common Lisp up to par with "scripting
languages" in terms of ease of writing and deploying portable code
that can access and "glue" together functionality from the underly-
ing system or external programs. "Scripts" can thus be written in
Common Lisp, and take advantage of its expressive power, well-
defined semantics, and efficient implementations. We describe the
most salient improvements in ASDF and how they enable previ-
ously difficult and portably impossible uses of the programming
language. We discuss past and future challenges in improving this
key piece of software infrastructure, and what approaches did or
didn’t work in bringing change to the Common Lisp community.

Introduction
As of 2013, one can use Common Lisp (CL)1 to portably write
the programs for which one traditionally uses so-called "scripting"
languages: one can write small scripts that glue together function-
ality provided by the operating system (OS), external programs, C

1 Common Lisp, often abbreviated CL, is a language defined in the
ANSI standard X3.226-1994 by technical committee X3J13. It’s a multi-
paradigm, dynamically-typed high-level language. Though it’s known for
its decent support for functional programming, its support for Object-
Oriented Programming is actually what remains unsurpassed still in many
ways; also, few languages even attempt to match either its syntactic exten-
sibility or its support for interactive development. It was explicitly designed
to allow for high-performance implementations; some of them, depending
on the application, may rival compiled C programs in terms of speed, usu-
ally far ahead of "scripting" languages and their implementations.
There are over a dozen maintained or unmaintained CL implementations.
No single one is at the same time the best, shiniest, leanest, fastest, cheapest,
and the one ported to the most platforms. For instance, SBCL is quite
popular for its runtime speed on Intel-compatible Linux machines; but it’s
slower at compiling and loading, won’t run on ARM, and doesn’t have
the best Windows support; and so depending on your constraints, you
might prefer Clozure CL, ECL, CLISP or ABCL. Or you might desire the
technical support or additional libraries from a proprietary implementation.
While it’s possible to write useful programs using only the standardized
parts of the language, fully taking advantage of extant libraries that harness
modern hardware and software techniques requires the use of various exten-
sions. Happily, each implementation provides its own extensions and there
exist libraries to abstract over the discrepancies between these implementa-
tions and provide portable access to threads (bordeaux-threads), Uni-
code support (cl-unicode), a "foreign function interface" to libraries
written in C (cffi), ML-style pattern-matching (optima), etc. A soft-
ware distribution system, Quicklisp, makes it easy to install hundreds of
libraries that use ASDF. The new features in ASDF 3 were only the last
missing pieces in this puzzle.

libraries, or network services; one can scale them into large, main-
tainable and modular systems; and one can make those new ser-
vices available to other programs via the command-line as well as
via network protocols, etc.

The last barrier to making that possible was the lack of a
portable way to build and deploy code so a same script can run
unmodified for many users on one or many machines using one or
many different compilers. This was solved by ASDF 3.

ASDF has been the de facto standard build system for portable
CL software since shortly after its release by Dan Barlow in 2002
(Barlow 2004). The purpose of a build system is to enable divi-
sion of labor in software development: source code is organized
in separately-developed components that depend on other compo-
nents, and the build system transforms the transitive closure of
these components into a working program.

ASDF 3 is the latest rewrite of the system. Aside from fixing
numerous bugs, it sports a new portability layer UIOP. One can
now use ASDF to write Lisp programs that may be invoked from the
command line or may spawn external programs and capture their
output ASDF can deliver these programs as standalone executable
files; moreover the companion script cl-launch (see section 2.9)
can create light-weight scripts that can be run unmodified on many
different kinds of machines, each differently configured. These
features make portable scripting possible. Previously, key parts
of a program had to be configured to match one’s specific CL
implementation, OS, and software installation paths. Now, all of
one’s usual scripting needs can be entirely fulfilled using CL,
benefitting from its efficient implementations, hundreds of software
libraries, etc.

In this article, we discuss how the innovations in ASDF 3 enable
new kinds of software development in CL. In section 1, we explain
what ASDF is about; we compare it to common practice in the C
world; this section does not require previous knowledge of CL. In
section 2, we describe the improvements introduced in ASDF 3 and
ASDF 3.1 to solve the problem of software delivery; this section
requires some familiarity with CL though some of its findings are
independent from CL; for a historical perspective you may want to
start with appendices A to F below before reading this section. In
section 3, we discuss the challenges of evolving a piece of com-
munity software, concluding with lessons learned from our experi-
ence; these lessons are of general interest to software programmers
though the specifics are related to CL.

This is the extended version of this article. In addition to extra
footnotes and examples, it includes several appendices with histori-
cal information about the evolution of ASDF before ASDF 3. There
again, the specifics will only interest CL programmers, but gen-
eral lessons can be found that are of general interest to all software
practitioners. Roughly in chronological order, we have the initial

1 2017/5/13

successful experiment in section 4; how it became robust and us-
able in section 5; the abyss of madness it had to bridge in section 6;
improvements in expressiveness in section 7; various failures in
section 8; and the bug that required rewriting it all over again in
section 9.

All versions of this article are available at http://fare.
tunes.org/files/asdf3/: extended HTML, extended PDF,
short HTML, short PDF (the latter was submitted to ELS 2014).

1. What ASDF is
1.1 ASDF: Basic Concepts
1.1.1 Components
ASDF is a build system for CL: it helps developers divide soft-
ware into a hierarchy of components and automatically generates a
working program from all the source code.

Top components are called systems in an age-old Lisp tradition,
while the bottom ones are source files, typically written in CL.
In between, there may be a recursive hierarchy of modules that
may contain files or other modules and may or may not map to
subdirectories.

Users may then operate on these components with various
build operations, most prominently compiling the source code (op-
eration compile-op) and loading the output into the current Lisp
image (operation load-op).

Several related systems may be developed together in the same
source code project. Each system may depend on code from other
systems, either from the same project or from a different project.
ASDF itself has no notion of projects, but other tools on top of
ASDF do: Quicklisp (Beane 2011) packages together systems
from a project into a release, and provides hundreds of releases
as a distribution, automatically downloading on demand required
systems and all their transitive dependencies.

Further, each component may explicitly declare a dependency
on other components: whenever compiling or loading a compo-
nent(as contrasted with running it) relies on declarations or def-
initions of packages, macros, variables, classes, functions, etc.,
present in another component, the programmer must declare that
the former component depends-on the latter.

1.1.2 Example System Definitions
Below is how the fare-quasiquote system is defined (with
elisions) in a file fare-quasiquote.asd. It contains three
files, packages, quasiquote and pp-quasiquote (the
.lisp suffix is automatically added based on the component class;
see section 6). The latter files each depend on the first file, because
this former file defines the CL packages2:

(defsystem "fare-quasiquote" ...
:depends-on ("fare-utils")
:components
((:file "packages")

(:file "quasiquote"

2 Packages are namespaces that contain symbols; they need to be created
before the symbols they contain may even be read as valid syntax.Each CL
process has a global flat two-level namespace: symbols, named by strings,
live in packages, also named by strings; symbols are read in the current
package, but the package may be overridden with colon-separated pre-
fix, as in other-package:some-symbol. However, this namespace
isn’t global across images: packages can import symbols from other pack-
ages, but a symbol keeps the name in all packages and knows its "home"
package; different CL processes running different code bases may thus have
a different set of packages, where symbols have different home packages;
printing symbols on one system and reading them on another may fail or
may lead to subtle bugs.

:depends-on ("packages"))
(:file "pp-quasiquote"

:depends-on ("quasiquote"))))

Among the elided elements were metadata such as :license
"MIT", and extra dependency information :in-order-to
((test-op (test-op "fare-quasiquote-test"))),
that delegates testing the current system to running tests on an-
other system. Notice how the system itself depends-on another sys-
tem, fare-utils, a collection of utility functions and macros
from another project, whereas testing is specified to be done by
fare-quasiquote-test, a system defined in a different file,
fare-quasiquote-test.asd, within the same project.

The fare-utils.asd file, in its own project, looks like this
(with a lot of elisions):

(defsystem "fare-utils" ...
:components
((:file "package")

(:module "base"
:depends-on ("package")
:components
((:file "utils")

(:file "strings" :depends-on ("utils"))
...))

(:module "filesystem"
:depends-on ("base")
:components
...)

...))

This example illustrates the use of modules: The first compo-
nent is a file package.lisp, that all other components depend
on. Then, there is a module base; in absence of contrary decla-
ration, it corresponds to directory base/; and it itself contains
files utils.lisp, strings.lisp, etc. As you can see, depen-
dencies name sibling components under the same parent system or
module, that can themselves be files or modules.

1.1.3 Action Graph
The process of building software is modeled as a Directed Acyclic
Graph (DAG) of actions, where each action is a pair of an oper-
ation and a component. The DAG defines a partial order, whereby
each action must be performed, but only after all the actions it (tran-
sitively) depends-on have already been performed.

For instance, in fare-quasiquote above, the loading of
(the output of compiling) quasiquote depends-on the compiling
of quasiquote, which itself depends-on the loading of (the
output of compiling) package, etc.

Importantly, though, this graph is distinct from the preceding
graph of components: the graph of actions isn’t a mere refinement
of the graph of components but a transformation of it that also
incorporates crucial information about the structure of operations.

Unlike its immediate predecessor mk-defsystem, ASDF
makes a plan of all actions needed to obtain an up-to-date ver-
sion of the build output before it performs these actions. In ASDF
itself, this plan is a topologically sorted list of actions to be per-
formed sequentially: a total order that is a linear extension of the
partial order of dependencies; performing the actions in that order
ensures that the actions are always performed after the actions they
depend on.

It’s of course possible to reify the complete DAG of actions
rather than just extracting from it a single consistent ordered se-
quence. Andreas Fuchs did in 2006, in a small but quite brilliant
ASDF extension called POIU, the "Parallel Operator on Indepen-
dent Units". POIU compiles files in parallel on Unix multiproces-
sors using fork, while still loading them sequentially into a main

2 2017/5/13

http://fare.tunes.org/files/asdf3/
http://fare.tunes.org/files/asdf3/
http://fare.tunes.org/files/asdf3/asdf3-2014.html
http://fare.tunes.org/files/asdf3/asdf3-2014.pdf
http://fare.tunes.org/files/asdf3/asdf3-els2014.html
http://fare.tunes.org/files/asdf3/asdf3-els2014.pdf
http://www.european-lisp-symposium.org/

image, minimizing latency. We later rewrote POIU, making it both
more portable and simpler by co-developing it with ASDF. Under-
standing the many clever tricks by which Andreas Fuchs overcame
the issues with the ASDF 1 model to compute such a complete DAG
led to many aha moments, instrumental when writing ASDF 3 (see
section 9).

Users can extend ASDF by defining new subclasses of oper-
ation and/or component and the methods that use them, or by
using global, per-system, or per-component hooks.

1.1.4 In-image
ASDF is an "in-image" build system, in the Lisp defsystem
tradition: it compiles (if necessary) and loads software into the cur-
rent CL image, and can later update the current image by recom-
piling and reloading the components that have changed. For better
and worse, this notably differs from common practice in most other
languages, where the build system is a completely different piece of
software running in a separate process.3 On the one hand, it min-
imizes overhead to writing build system extensions. On the other
hand, it puts great pressure on ASDF to remain minimal.

Qualitatively, ASDF must be delivered as a single source file
and cannot use any external library, since it itself defines the code
that may load other files and libraries. Quantitatively, ASDF must
minimize its memory footprint, since it’s present in all programs
that are built, and any resource spent is paid by each program.4

For all these reasons, ASDF follows the minimalist principle
that anything that can be provided as an extension should be
provided as an extension and left out of the core. Thus it cannot
afford to support a persistence cache indexed by the cryptographic
digest of build expressions, or a distributed network of workers,
etc. However, these could conceivably be implemented as ASDF
extensions.

1.2 Comparison to C programming practice
Most programmers are familiar with C, but not with CL. It’s there-
fore worth contrasting ASDF to the tools commonly used by C pro-
grammers to provide similar services. Note though how these ser-
vices are factored in very different ways in CL and in C.

To build and load software, C programmers commonly use
make to build the software and ld.so to load it. Additionally,
they use a tool like autoconf to locate available libraries and
identify their features.5 In many ways these C solutions are better
engineered than ASDF. But in other important ways ASDF demon-
strates how these C systems have much accidental complexity that
CL does away with thanks to better architecture.

• Lisp makes the full power of runtime available at compile-time,
so it’s easy to implement a Domain-Specific Language (DSL):
the programmer only needs to define new functionality, as an
extension that is then seamlessly combined with the rest of the
language, including other extensions. In C, the many utilities
that need a DSL must grow it onerously from scratch; since the
domain expert is seldom also a language expert with resources
to do it right, this means plenty of mutually incompatible, mis-
designed, power-starved, misimplemented languages that have
to be combined through an unprincipled chaos of expensive yet
inexpressive means of communication.

3 Of course, a build system could compile CL code in separate processes,
for the sake of determinism and parallelism: our XCVB did (Brody 2009);
so does the Google build system.
4 This arguably mattered more in 2002 when ASDF was first released and
was about a thousand lines long: By 2014, it has grown over ten times in
size, but memory sizes have increased even faster.
5 ASDF 3 also provides functionality which would correspond to small parts
of the libc and of the linker ld.

• Lisp provides full introspection at runtime and compile-time
alike, as well as a protocol to declare features and condition-
ally include or omit code or data based on them. Therefore you
don’t need dark magic at compile-time to detect available fea-
tures. In C, people resort to horribly unmaintainable configu-
ration scripts in a hodge podge of shell script, m4 macros, C
preprocessing and C code, plus often bits of python, perl,
sed, etc.

• ASDF possesses a standard and standardly extensible way to
configure where to find the libraries your code depends on,
further improved in ASDF 2. In C, there are tens of incompatible
ways to do it, between libtool, autoconf, kde-config,
pkg-config, various manual ./configure scripts, and
countless other protocols, so that each new piece of software
requires the user to learn a new ad hoc configuration method,
making it an expensive endeavor to use or distribute libraries.

• ASDF uses the very same mechanism to configure both runtime
and compile-time, so there is only one configuration mecha-
nism to learn and to use, and minimal discrepancy.6 In C, com-
pletely different, incompatible mechanisms are used at runtime
(ld.so) and compile-time (unspecified), which makes it hard
to match source code, compilation headers, static and dynamic
libraries, requiring complex "software distribution" infrastruc-
tures (that admittedly also manage versioning, downloading and
precompiling); this at times causes subtle bugs when discrepan-
cies creep in.

Nevertheless, there are also many ways in which ASDF pales
in comparison to other build systems for CL, C, Java, or other
systems:

• ASDF isn’t a general-purpose build system. Its relative sim-
plicity is directly related to it being custom made to build CL
software only. Seen one way, it’s a sign of how little you can
get away with if you have a good basic architecture; a simi-
larly simple solution isn’t available to most other programming
languages, that require much more complex tools to achieve a
similar purpose. Seen another way, it’s also the CL community
failing to embrace the outside world and provide solutions with
enough generality to solve more complex problems.7

• At the other extreme, a build system for CL could have been
made that is much simpler and more elegant than ASDF, if it
could have required software to follow some simple organiza-
tion constraints, without much respect for legacy code. A con-
structive proof of that is quick-build (Bridgewater 2012),
being a fraction of the size of ASDF, itself a fraction of the size
of ASDF 3, and with a fraction of the bugs — but none of the
generality and extensibility (See section 2.10).

• ASDF it isn’t geared at all to build large software in mod-
ern adversarial multi-user, multi-processor, distributed environ-
ments where source code comes in many divergent versions
and in many configurations. It is rooted in an age-old model of
building software in-image, what’s more in a traditional single-
processor, single-machine environment with a friendly single
user, a single coherent view of source code and a single target

6 There is still discrepancy inherent with these times being distinct: the
installation or indeed the machine may have changed.
7 ASDF 3 could be easily extended to support arbitrary build actions, if there
were an according desire. But ASDF 1 and 2 couldn’t: their action graph
was not general enough, being simplified and tailored for the common use
case of compiling and loading Lisp code; and their ability to call arbitrary
shell programs was a misdesigned afterthought (copied over from mk-
defsystem) the implementation of which wasn’t portable, with too many
corner cases.

3 2017/5/13

configuration. The new ASDF 3 design is consistent and gen-
eral enough that it could conceivably be made to scale, but that
would require a lot of work.

2. ASDF 3: A Mature Build
2.1 A Consistent, Extensible Model
Surprising as it may be to the CL programmers who used it daily,
there was an essential bug at the heart of ASDF: it didn’t even try
to propagate timestamps from one action to the next. And yet it
worked, mostly. The bug was present from the very first day in
2001, and even before in mk-defsystem since 1990 (Kantrowitz
1990), and it survived till December 2012, despite all our robusti-
fication efforts since 2009 (Goldman 2010). Fixing it required a
complete rewrite of ASDF’s core.

As a result, the object model of ASDF became at the same
time more powerful, more robust, and simpler to explain. The dark
magic of its traverse function is replaced by a well-documented
algorithm. It’s easier than before to extend ASDF, with fewer lim-
itations and fewer pitfalls: users may control how their operations
do or don’t propagate along the component hierarchy. Thus, ASDF
can now express arbitrary action graphs, and could conceivably be
used in the future to build more than just CL programs.

The proof of a good design is in the ease of extending it.
And in CL, extension doesn’t require privileged access to the code
base. We thus tested our design by adapting the most elaborate ex-
isting ASDF extensions to use it. The result was indeed cleaner,
eliminating the previous need for overrides that redefined sizable
chunks of the infrastructure. Chronologically, however, we con-
sciously started this porting process in interaction with developing
ASDF 3, thus ensuring ASDF 3 had all the extension hooks required
to avoid redefinitions.

See the entire story in section 9.

2.2 Bundle Operations
Bundle operations create a single output file for an entire system or
collection of systems. The most directly user-facing bundle oper-
ations are compile-bundle-op and load-bundle-op: the
former bundles into a single compilation file all the individual out-
puts from the compile-op of each source file in a system; the
latter loads the result of the former. Also lib-op links into a li-
brary all the object files in a system and dll-op creates a dynam-
ically loadable library out of them. The above bundle operations
also have so-called monolithic variants that bundle all the files in a
system and all its transitive dependencies.

Bundle operations make delivery of code much easier. They
were initially introduced as asdf-ecl, an extension to ASDF
specific to the implementation ECL, back in the day of ASDF 1.8

asdf-ecl was distributed with ASDF 2, though in a way that
made upgrade slightly awkward to ECL users, who had to explicitly
reload it after upgrading ASDF, even though it was included by the
initial (require "asdf"). In May 2012, it was generalized

8 Most CL implementations maintain their own heap with their own garbage
collector, and then are able to dump an image of the heap on disk, that can
be loaded back in a new process with all the state of the former process.
To build an application, you thus start a small initial image, load plenty of
code, dump an image, and there you are. ECL, instead, is designed to be
easily embeddable in a C program; it uses the popular C garbage collector
by Hans Boehm & al., and relies on linking and initializer functions rather
than on dumping. To build an application with ECL (or its variant MKCL),
you thus link all the libraries and object files together, and call the proper
initialization functions in the correct order. Bundle operations are important
to deliver software using ECL as a library to be embedded in some C
program. Also, because of the overhead of dynamic linking, loading a single
object file is preferable to a lot of smaller object files.

to other implementations as the external system asdf-bundle.
It was then merged into ASDF during the development of ASDF
3 (2.26.7, December 2012): not only did it provide useful new
operations, but the way that ASDF 3 was automatically upgrading
itself for safety purposes (see section 5.1) would otherwise have
broken things badly for ECL users if the bundle support weren’t
itself bundled with ASDF.

In ASDF 3.1, using deliver-asd-op, you can create both
the bundle from compile-bundle-op and an .asd file to use
to deliver the system in binary format only.

Note that compile-bundle-op, load-bundle-op and
deliver-asd-op were respectively called fasl-op, load-
fasl-op and binary-op in the original asdf-ecl and its
successors up until ASDF 3.1. But those were bad names, since
every individual compile-op has a fasl (a fasl, for FASt Loading,
is a CL compilation output file), and since deliver-asd-op
doesn’t generate a binary. They were eventually renamed, with
backward compatibility stubs left behind under the old name.

2.3 Understandable Internals
After bundle support was merged into ASDF (see section 2.2
above), it became trivial to implement a new concatenate-
source-op operation. Thus ASDF could be developed as multi-
ple files, which would improve maintainability. For delivery pur-
pose, the source files would be concatenated in correct dependency
order, into the single file asdf.lisp required for bootstrapping.

The division of ASDF into smaller, more intelligible pieces had
been proposed shortly after we took over ASDF; but we had re-
jected the proposal then on the basis that ASDF must not depend
on external tools to upgrade itself from source, another strong re-
quirement (see section 5.1). With concatenate-source-op,
an external tool wasn’t needed for delivery and regular upgrade,
only for bootstrap. Meanwhile this division had also become more
important, since ASDF had grown so much, having almost tripled
in size since those days, and was promising to grow some more. It
was hard to navigate that one big file, even for the maintainer, and
probably impossible for newcomers to wrap their head around it.

To bring some principle to this division (2.26.62), we fol-
lowed the principle of one file, one package, as demonstrated
by faslpath (Etter 2009) and quick-build (Bridgewater
2012), though not yet actively supported by ASDF itself (see sec-
tion 2.10). This programming style ensures that files are indeed
providing related functionality, only have explicit dependencies on
other files, and don’t have any forward dependencies without spe-
cial declarations. Indeed, this was a great success in making ASDF
understandable, if not by newcomers, at least by the maintainer
himself;9 this in turn triggered a series of enhancements that would
not otherwise have been obvious or obviously correct, illustrating
the principle that good code is code you can understand, orga-
nized in chunks you can each fit in your brain.

2.4 Package Upgrade
Preserving the hot upgradability of ASDF was always a strong re-
quirement (see section 5.1). In the presence of this package refac-
toring, this meant the development of a variant of CL’s def-
package that plays nice with hot upgrade: define-package.
Whereas the former isn’t guaranteed to work and may signal an
error when a package is redefined in incompatible ways, the lat-
ter will update an old package to match the new desired definition
while recycling existing symbols from that and other packages.

9 On the other hand, a special setup is now required for the debugger to
locate the actual source code in ASDF; but this price is only paid by ASDF
maintainers.

4 2017/5/13

Thus, in addition to the regular clauses from defpackage,
define-package accepts a clause :recycle: it attempts to
recycle each declared symbol from each of the specified packages
in the given order. For idempotence, the package itself must be
the first in the list. For upgrading from an old ASDF, the :asdf
package is always named last. The default recycle list consists in a
list of the package and its nicknames.

New features also include :mix and :reexport. :mix
mixes imported symbols from several packages: when multiple
packages export symbols with the same name, the conflict is auto-
matically resolved in favor of the package named earliest, whereas
an error condition is raised when using the standard :use clause.
:reexport reexports the same symbols as imported from given
packages, and/or exports instead the same-named symbols that
shadow them. ASDF 3.1 adds :mix-reexport and :use-
reexport, which combine :reexport with :mix or :use
in a single statement, which is more maintainable than repeating a
list of packages.

2.5 Portability Layer
Splitting ASDF into many files revealed that a large fraction of
it was already devoted to general purpose utilities. This fraction
only grew under the following pressures: a lot of opportunities for
improvement became obvious after dividing ASDF into many files;
features added or merged in from previous extensions and libraries
required new general-purpose utilities; as more tests were added
for new features, and were run on all supported implementations,
on multiple operating systems, new portability issues cropped up
that required development of robust and portable abstractions.

The portability layer, after it was fully documented, ended up
being slightly bigger than the rest of ASDF. Long before that
point, ASDF was thus formally divided in two: this portability
layer, and the defsystem itself. The portability layer was ini-
tially dubbed asdf-driver, because of merging in a lot of
functionality from xcvb-driver. Because users demanded a
shorter name that didn’t include ASDF, yet would somehow be re-
mindful of ASDF, it was eventually renamed UIOP: the Utilities
for Implementation- and OS- Portability10. It was made available
separately from ASDF as a portability library to be used on its
own; yet since ASDF still needed to be delivered as a single file
asdf.lisp, UIOP was transcluded inside that file, now built us-
ing the monolithic-concatenate-source-op operation.
At Google, the build system actually uses UIOP for portability
without the rest of ASDF; this led to UIOP improvements that will
be released with ASDF 3.1.2.

Most of the utilities deal with providing sane pathname abstrac-
tions (see section 6), filesystem access, sane input/output (including
temporary files), basic operating system interaction — many things
for which the CL standard lacks. There is also an abstraction layer
over the less-compatible legacy implementations, a set of general-
purpose utilities, and a common core for the ASDF configuration
DSLs.11 Importantly for a build system, there are portable abstrac-
tions for compiling CL files while controlling all the warnings and
errors that can occur, and there is support for the life-cycle of a
Lisp image: dumping and restoring images, initialization and final-
ization hooks, error handling, backtrace display, etc. However, the
most complex piece turned out to be a portable implementation of
run-program.

10 U, I, O and P are also the four letters that follow QWERTY on an anglo-
saxon keyboard.
11 ASDF 3.1 notably introduces a nest macro that nests arbitrarily many
forms without indentation drifting ever to the right. It makes for more
readable code without sacrificing good scoping discipline.

2.6 run-program

With ASDF 3, you can run external commands as follows:

(run-program `("cp" "-lax" "--parents"
"src/foo" ,destination))

On Unix, this recursively hardlinks files in directory src/foo into
a directory named by the string destination, preserving the
prefix src/foo. You may have to add :output t :error-
output t to get error messages on your *standard-output*
and *error-output* streams, since the default value, nil,
designates /dev/null. If the invoked program returns an error
code, run-program signals a structured CL error, unless you
specified :ignore-error-status t.

This utility is essential for ASDF extensions and CL code in
general to portably execute arbitrary external programs. It was a
challenge to write: Each implementation provided a different un-
derlying mechanism with wildly different feature sets and count-
less corner cases. The better ones could fork and exec a process and
control its standard-input, standard-output and error-output; lesser
ones could only call the system(3) C library function. More-
over, Windows support differed significantly from Unix. ASDF 1
itself actually had a run-shell-command, initially copied over
from mk-defsystem, but it was more of an attractive nuisance
than a solution, despite our many bug fixes: it was implicitly call-
ing format; capturing output was particularly contrived; and what
shell would be used varied between implementations, even more so
on Windows.12

ASDF 3’s run-program is full-featured, based on code orig-
inally from XCVB’s xcvb-driver (Brody 2009). It abstracts
away all these discrepancies to provide control over the program’s
standard-output, using temporary files underneath if needed. Since
ASDF 3.0.3, it can also control the standard-input and error-output.
It accepts either a list of a program and arguments, or a shell com-
mand string. Thus your previous program could have been:

(run-program
(format nil "cp -lax --parents src/foo „S"

(native-namestring destination))
:output t :error-output t)

where (UIOP)’s native-namestring converts the path-
name object destination into a name suitable for use by the
operating system, as opposed to a CL namestring that might be
escaped somehow.

You can also inject input and capture output:

(run-program '("tr" "a-z" "n-za-m")
:input '("uryyb, jbeyq") :output :string)

returns the string "hello, world". It also returns secondary
and tertiary values nil and 0 respectively, for the (non-captured)
error-output and the (successful) exit code.

run-program only provides a basic abstraction; a separate
system inferior-shell was written on top of UIOP, and
provides a richer interface, handling pipelines, zsh style redirec-
tions, splicing of strings and/or lists into the arguments, and im-
plicit conversion of pathnames into native-namestrings, of symbols

12 Actually, our first reflex was to declare the broken run-shell-
command deprecated, and move run-program to its own separate sys-
tem. However, after our then co-maintainer (and now maintainer) Robert
Goldman insisted that run-shell-command was required for backward
compatibility and some similar functionality expected by various ASDF ex-
tensions, we decided to provide the real thing rather than this nuisance, and
moved from xcvb-driver the nearest code there was to this real thing,
that we then extended to make it more portable, robust, etc., according to the
principle: Whatever is worth doing at all is worth doing well (Chester-
field).

5 2017/5/13

into downcased strings, of keywords into downcased strings with
a -- prefix. Its short-named functions run, run/nil, run/s,
run/ss, respectively run the external command with outputs to
the Lisp standard- and error- output, with no output, with output to
a string, or with output to a stripped string. Thus you could get the
same result as previously with:

(run/ss '(pipe (echo (uryyb ", " jbeyq))
(tr a-z (n-z a-m))))

Or to get the number of processors on a Linux machine, you can:

(run '(grep -c "^processor.:"
(< /proc/cpuinfo))

:output #'read)

2.7 Configuration Management
ASDF always had minimal support for configuration management.
ASDF 3 doesn’t introduce radical change, but provides more usable
replacements or improvements for old features.

For instance, ASDF 1 had always supported version-checking:
each component (usually, a system) could be given a version string
with e.g. :version "3.1.0.97", and ASDF could be told to
check that dependencies of at least a given version were used,
as in :depends-on ((:version "inferior-shell"
"2.0.0")). This feature can detect a dependency mismatch
early, which saves users from having to figure out the hard way
that they need to upgrade some libraries, and which.

Now, ASDF always required components to use "semantic ver-
sioning", where versions are strings made of dot-separated numbers
like 3.1.0.97. But it didn’t enforce it, leading to bad surprises
for the users when the mechanism was expected to work, but failed.
ASDF 3 issues a warning when it finds a version that doesn’t fol-
low the format. It would actually have issued an error, if that
didn’t break too many existing systems.

Another problem with version strings was that they had to be
written as literals in the .asd file, unless that file took painful
steps to extract it from another source file. While it was easy for
source code to extract the version from the system definition, some
authors legitimately wanted their code to not depend on ASDF it-
self. Also, it was a pain to repeat the literal version and/or the
extraction code in every system definition in a project. ASDF 3 can
thus extract version information from a file in the source tree, with,
e.g. :version (:read-file-line "version.text")
to read the version as the first line of file version.text. To
read the third line, that would have been :version (:read-
file-line "version.text" :at 2) (mind the off-by-
one error in the English language). Or you could extract the
version from source code. For instance, poiu.asd specifies
:version (:read-file-form "poiu.lisp" :at (1
2 2)) which is the third subform of the third subform of the
second form in the file poiu.lisp. The first form is an in-
package and must be skipped. The second form is an (eval-
when (...) body...) the body of which starts with a (def-
parameter *poiu-version* ...) form. ASDF 3 thus
solves this version extraction problem for all software — except
itself, since its own version has to be readable by ASDF 2 as well
as by who views the single delivery file; thus its version informa-
tion is maintained by a management script using regexps, of course
written in CL.

Another painful configuration management issue with ASDF 1
and 2 was lack of a good way to conditionally include files de-
pending on which implementation is used and what features it sup-
ports. One could always use CL reader conditionals such as #+(or
sbcl clozure) but that means that ASDF could not even see
the components being excluded, should some operation be invoked
that involves printing or packaging the code rather than compil-

ing it — or worse, should it involve cross-compilation for another
implementation with a different feature set. There was an obscure
way for a component to declare a dependency on a :feature,
and annotate its enclosing module with :if-component-dep-
fails :try-next to catch the failure and keep trying. But
the implementation was a kluge in traverse that short-circuited
the usual dependency propagation and had exponential worst case
performance behavior when nesting such pseudo-dependencies to
painfully emulate feature expressions.

ASDF 3 gets rid of :if-component-dep-fails: it didn’t
fit the fixed dependency model at all. A limited compatibility mode
without nesting was preserved to keep processing old versions of
SBCL. As a replacement, ASDF 3 introduces a new option :if-
feature in component declarations, such that a component is
only included in a build plan if the given feature expression is true
during the planning phase. Thus a component annotated with :if-
feature (:and :sbcl (:not :sb-unicode)) (and its
children, if any) is only included on an SBCL without Unicode sup-
port. This is more expressive than what preceded, without requiring
inconsistencies in the dependency model, and without pathological
performance behavior.

2.8 Standalone Executables
One of the bundle operations contributed by the ECL team was
program-op, that creates a standalone executable. As this was
now part of ASDF 3, it was only natural to bring other ASDF-
supported implementations up to par: CLISP, Clozure CL, CMUCL,
LispWorks, SBCL, SCL. Thus UIOP features a dump-image
function to dump the current heap image, except for ECL and
its successors that follow a linking model and use a create-
image function. These functions were based on code from xcvb-
driver, which had taken them from cl-launch.

ASDF 3 also introduces a defsystem option to specify an
entry point as e.g. :entry-point "my-package:entry-
point". The specified function (designated as a string to be read
after the package is created) is called without arguments after the
program image is initialized; after doing its own initializations,
it can explicitly consult *command-line-arguments*13 or
pass it as an argument to some main function.

Our experience with a large application server at ITA Software
showed the importance of hooks so that various software compo-
nents may modularly register finalization functions to be called be-
fore dumping the image, and initialization functions to be called
before calling the entry point. Therefore, we added support for
image life-cycle to UIOP. We also added basic support for run-
ning programs non-interactively as well as interactively based on a
variable *lisp-interaction*: non-interactive programs exit
with a backtrace and an error message repeated above and below
the backtrace, instead of inflicting a debugger on end-users; any
non-nil return value from the entry-point function is considered
success and nil failure, with an appropriate program exit status.

Starting with ASDF 3.1, implementations that don’t support
standalone executables may still dump a heap image using the
image-op operation, and a wrapper script, e.g. created by cl-
launch, can invoke the program; delivery is then in two files
instead of one. image-op can also be used by all implementations
to create intermediate images in a staged build, or to provide ready-
to-debug images for otherwise non-interactive applications.

13 In CL, most variables are lexically visible and statically bound, but spe-
cial variables are globally visible and dynamically bound. To avoid subtle
mistakes, the latter are conventionally named with enclosing asterisks, also
known in recent years as earmuffs.

6 2017/5/13

2.9 cl-launch

Running Lisp code to portably create executable commands from
Lisp is great, but there is a bootstrapping problem: when all you
can assume is the Unix shell, how are you going to portably invoke
the Lisp code that creates the initial executable to begin with?

We solved this problem some years ago with cl-launch. This
bilingual program, both a portable shell script and a portable CL
program, provides a nice colloquial shell command interface to
building shell commands from Lisp code, and supports delivery
as either portable shell scripts or self-contained precompiled ex-
ecutable files.14

Its latest incarnation, cl-launch 4 (March 2014), was up-
dated to take full advantage of ASDF 3. Its build specification in-
terface was made more general, and its Unix integration was im-
proved. You may thus invoke Lisp code from a Unix shell:
cl -sp lisp-stripper \

-i "(print-loc-count \"asdf.lisp\")"
You can also use cl-launch as a script "interpreter", except

that it invokes a Lisp compiler underneath:15

#!/usr/bin/cl -sp lisp-stripper -E main
(defun main (argv)

(if argv
(map () 'print-loc-count argv)
(print-loc-count *standard-input*)))

In the examples above, option -sp, shorthand for --system-
package, simultaneously loads a system using ASDF during the
build phase, and appropriately selects the current package; -i,
shorthand for --init evaluates a form at the start of the execution
phase; -E, shorthand for --entry configures a function that is
called after init forms are evaluated, with the list of command-
line arguments as its argument.16 As for lisp-stripper, it’s a
simple library that counts lines of code after removing comments,
blank lines, docstrings, and multiple lines in strings.

cl-launch automatically detects a CL implementation in-
stalled on your machine, with sensible defaults. You can eas-
ily override all defaults with a proper command-line option, a
configuration file, or some installation-time configuration. See
cl-launch --more-help for complete information. Note
that cl-launch is on a bid to homestead the executable path
/usr/bin/cl on Linux distributions; it may slightly more
portably be invoked as cl-launch.

A nice use of cl-launch is to compare how various imple-
mentations evaluate some form, to see how portable it is in practice,
whether the standard mandates a specific result or not:
for l in sbcl ccl clisp cmucl ecl abcl \

scl allegro lispworks gcl xcl ; do
cl -l $l -i \
'(format t "'$l': „S„%" `#5(1 ,@`(2 3)))' \
2>&1 | grep "^$l:" # LW, GCL are verbose

done
cl-launch compiles all the files and systems that are speci-

fied, and keeps the compilation results in the same output-file cache

14 cl-launch and the scripts it produces are bilingual: the very same
file is accepted by both language processors. This is in contrast to self-
extracting programs, where pieces written in multiple languages have to be
extracted first before they may be used, which incurs a setup cost and is
prone to race conditions.
15 The Unix expert may note that despite most kernels coalescing all ar-
guments on the first line (stripped to 128 characters or so) into a single
argument, cl-launch detects such situations and properly restores and
interprets the command-line.
16 Several systems are available to help you define an evaluator for your
command-line argument DSL: command-line-arguments, clon,
lisp-gflags.

as ASDF 3, nicely segregating them by implementation, version,
ABI, etc.17 Therefore, the first time it sees a given file or system,
or after they have been updated, there may be a startup delay while
the compiler processes the files; but subsequent invocations will be
faster as the compiled code is directly loaded. This is in sharp con-
trast with other "scripting" languages, that have to slowly interpret
or recompile everytime. For security reasons, the cache isn’t shared
between users.

2.10 package-inferred-system

ASDF 3.1 introduces a new extension package-inferred-
system that supports a one-file, one-package, one-system style
of programming. This style was pioneered by faslpath (Etter
2009) and more recently quick-build (Bridgewater 2012).
This extension is actually compatible with the latter but not the
former, for ASDF 3.1 and quick-build use a slash "/" as a
hierarchy separator where faslpath used a dot ".".

This style consists in every file starting with a defpackage
or define-package form; from its :use and :import-
from and similar clauses, the build system can identify a list
of packages it depends on, then map the package names to the
names of systems and/or other files, that need to be loaded first.
Thus package name lil/interface/all refers to the file
interface/all.lisp18 under the hierarchy registered by
system lil, defined as follows in lil.asd as using class
package-inferred-system:

(defsystem "lil" ...
:description "LIL: Lisp Interface Library"
:class :package-inferred-system
:defsystem-depends-on ("asdf-package-system")
:depends-on ("lil/interface/all"

"lil/pure/all" ...)
...)

The :defsystem-depends-on ("asdf-package-system")
is an external extension that provides backward compatibility with
ASDF 3.0, and is part of Quicklisp. Because not all package names
can be directly mapped back to a system name, you can register new
mappings for package-inferred-system. The lil.asd
file may thus contain forms such as:

(register-system-packages :closer-mop
'(:c2mop :closer-common-lisp :c2cl ...))

Then, a file interface/order.lisp under the lil hierarchy,
that defines abstract interfaces for order comparisons, starts with
the following form, dependencies being trivially computed from
the :use and :mix clauses:

(uiop:define-package :lil/interface/order
(:use :closer-common-lisp

:lil/interface/definition
:lil/interface/base
:lil/interface/eq :lil/interface/group)

(:mix :fare-utils :uiop :alexandria)
(:export ...))

This style provides many maintainability benefits: by imposing
upon programmers a discipline of smaller namespaces, with ex-
plicit dependencies and especially explicit forward dependencies,

17 Historically, it’s more accurate to say that ASDF imported the cache tech-
nology previously implemented by cl-launch, which itself generalized
it from common-lisp-controller.
18 Since in CL, packages are traditionally designated by symbols that are
themselves traditionally upcased, case information is typically not mean-
ingful. When converting a package name to system name or filename, we
downcase the package names to follow modern convention.

7 2017/5/13

the style encourages good factoring of the code into coherent units;
by contrast, the traditional style of "everything in one package" has
low overhead but doesn’t scale very well. ASDF itself was rewritten
in this style as part of ASDF 2.27, the initial ASDF 3 pre-release,
with very positive results.

Since it depends on ASDF 3, package-inferred-system
isn’t as lightweight as quick-build, which is almost two or-
ders of magnitude smaller than ASDF 3. But it does interoperate
perfectly with the rest of ASDF, from which it inherits the many
features, the portability, and the robustness.

2.11 Restoring Backward Compatibility
ASDF 3 had to break compatibility with ASDF 1 and 2: all op-
erations used to be propagated sideway and downward along the
component DAG (see section 9). In most cases this was undesired;
indeed, ASDF 3 is predicated upon a new operation prepare-op
that instead propagates upward.19 Most existing ASDF extensions
thus included workarounds and approximations to deal with the is-
sue. But a handful of extensions did expect this behavior, and now
they were broken.

Before the release of ASDF 3, authors of all known ASDF
extensions distributed by Quicklisp had been contacted, to make
their code compatible with the new fixed model. But there was
no way to contact unidentified authors of proprietary extensions,
beside sending an announcement to the mailing-list. Yet, whatever
message was sent didn’t attract enough attention. Even our co-
maintainer Robert Goldman got bitten hard when an extension used
at work stopped working, wasting days to figure out the issue.

Therefore, ASDF 3.1 features enhanced backward-compatibility.
The class operation implements sideway and downward prop-
agation on all classes that do not explicitly inherit from any
of the propagating mixins downward-operation, upward-
operation, sideway-operation or selfward-operation,
unless they explicitly inherit from the new mixin non-propagating-
operation. ASDF 3.1 signals a warning at runtime when an
operation class is instantiated that doesn’t inherit from any of the
above mixins, which will hopefully tip off authors of a proprietary
extension that it’s time to fix their code. To tell ASDF 3.1 that their
operation class is up-to-date, extension authors may have to define
their non-propagating operations as follows:
(defclass my-op (#+asdf3.1 non-propagating-
operation operation) ())

This is a case of "negative inheritance", a technique usually
frowned upon, for the explicit purpose of backward compatibility.
Now ASDF cannot use the CLOS Meta-Object Protocol (MOP),
because it hasn’t been standardized enough to be portably used
without using an abstraction library such as closer-mop, yet
ASDF cannot depend on any external library, and this is too small
an issue to justify making a sizable MOP library part of UIOP.
Therefore, the negative inheritance is implemented in an ad hoc
way at runtime.

3. Code Evolution in a Conservative Community
3.1 Feature Creep? No, Mission Creep
Throughout the many features added and tenfold increase in size
from ASDF 1 to ASDF 3, ASDF remained true to its minimalism —
but the mission, relative to which the code remains minimal, was
extended, several times: In the beginning, ASDF was the simplest
extensible variant of defsystem that builds CL software (see sec-
tion 4). With ASDF 2, it had to be upgradable, portable, modularly

19 Sideway means the action of operation o on component c depends-on
the action of o (or another operation) on each of the declared dependencies
of c. Downward means that it depends-on the action of o on each of c’s
children; upward, on c’s parent (enclosing module or system).

configurable, robust, performant, usable (see section 5). Then it had
to be more declarative, more reliable, more predictable, and capa-
ble of supporting language extensions (see section 7). Now, ASDF
3 has to support a coherent model for representing dependencies,
an alternative one-package-per-file style for declaring them, soft-
ware delivery as either scripts or binaries, a documented portability
layer including image life-cycle and external program invocation,
etc. (see section 2).

3.2 Backward Compatibility is Social, not Technical
As efforts were made to improve ASDF, a constant constraint was
that of backward compatibility: every new version of ASDF had to
be compatible with the previous one, i.e. systems that were defined
using previous versions had to keep working with new versions.
But what more precisely is backward compatibility?

In an overly strict definition that precludes any change in be-
havior whatsoever, even the most uncontroversial bug fix isn’t
backward-compatible: any change, for the better as it may be, is
incompatible, since by definition, some behavior has changed!

One might be tempted to weaken the constraint a bit, and de-
fine "backward compatible" as being the same as a "conservative
extension": a conservative extension may fix erroneous situations,
and give new meaning to situations that were previously undefined,
but may not change the meaning of previously defined situations.
Yet, this definition is doubly unsatisfactory. On the one hand, it pre-
cludes any amendment to previous bad decisions; hence, the jest if
it’s not backwards, it’s not compatible. On the other hand, even
if it only creates new situations that work correctly where they were
previously in error, some existing analysis tool might assume these
situations could never arise, and be confused when they now do.

Indeed this happened when ASDF 3 tried to better support sec-
ondary systems. ASDF looks up systems by name: if you try to
load system foo, ASDF will search in registered directories for a
file call foo.asd. Now, it was common practice that programmers
may define multiple "secondary" systems in a same .asd file, such
as a test system foo-test in addition to foo. This could lead to
"interesting" situations when a file foo-test.asd existed, from
a different, otherwise shadowed, version of the same library, result-
ing in a mismatch between the system and its tests.20 To make these
situations less likely, ASDF 3 recommends that you name your sec-
ondary system foo/test instead of of foo-test, which should
work just as well in ASDF 2, but with reduced risk of clash. More-
over, ASDF 3 can recognize the pattern and automatically load
foo.asd when requested foo/test, in a way guaranteed not
to clash with previous usage, since no directory could contain a file
thus named in any modern operating system. In contrast, ASDF 2
has no way to automatically locate the .asd file from the name
of a secondary system, and so you must ensure that you loaded the
primary .asd file before you may use the secondary system. This
feature may look like a textbook case of a backward-compatible
"conservative extension". Yet, it’s the major reason why Quicklisp
itself still hasn’t adopted ASDF 3: Quicklisp assumed it could al-
ways create a file named after each system, which happened to be
true in practice (though not guaranteed) before this ASDF 3 inno-
vation; systems that newly include secondary systems using this

20 Even more "interesting" was a case when you’d load your foo.asd,
which would define a secondary system foo-test, at the mere reference
of which ASDF would try to locate a canonical definition; it would not find
a foo-test.asd, instead Quicklisp might tell it to load it from its own
copy of foo.asd, at which the loading of which would refer to system
foo, for which ASDF would look at the canonical definition in its own
foo.asd, resulting in an infinite loop. ASDF 2 was robustified against
such infinite loops by memoizing the location of the canonical definition
for systems being defined.

8 2017/5/13

style break this assumption, and will require non-trivial work for
Quicklisp to support.

What then, is backward compatibility? It isn’t a technical con-
straint. Backward compatibility is a social constraint. The new
version is backward compatible if the users are happy. This doesn’t
mean matching the previous version on all the mathematically con-
ceivable inputs; it means improving the results for users on all the
actual inputs they use; or providing them with alternate inputs they
may use for improved results.

3.3 Weak Synchronization Requires Incremental Fixes
Even when some "incompatible" changes are not controversial,
it’s often necessary to provide temporary backward compatible
solutions until all the users can migrate to the new design. Changing
the semantics of one software system while other systems keep
relying on it is akin to changing the wheels on a running car: you
cannot usually change them all at once, at some point you must
have both kinds active, and you cannot remove the old ones until
you have stopped relying on them. Within a fast moving company,
such migration of an entire code base can happen in a single
checkin. If it’s a large company with many teams, the migration
can take many weeks or months. When the software is used by a
weakly synchronized group like the CL community, the migration
can take years.

When releasing ASDF 3, we spent a few months making sure
that it would work with all publicly available systems. We had to
fix many of these systems, but mostly, we were fixing ASDF 3 itself
to be more compatible. Indeed, several intended changes had to be
forsaken, that didn’t have an incremental upgrade path, or for which
it proved infeasible to fix all the clients.

A successful change was notably to modify the default encod-
ing from the uncontrolled environment-dependent :default to
the de facto standard :utf-8; this happened a year after adding
support for encodings and :utf-8 was added, and having fore-
warned community members of the future change in defaults, yet a
few systems still had to be fixed (see section 7.3).

On the other hand, an unsuccessful change was the attempt
to enable an innovative system to control warnings issued by the
compiler. First, the *uninteresting-conditions* mecha-
nism allows system builders to hush the warnings they know they
don’t care for, so that any compiler output is something they care
for, and whatever they care for isn’t drowned into a sea of unin-
teresting output. The mechanism itself is included in ASDF 3, but
disabled by default, because there was no consensually agreeable
value except an empty set, and no good way (so far) to configure it
both modularly and without pain. Second, another related mech-
anism that was similarly disabled is deferred-warnings,
whereby ASDF can check warnings that are deferred by SBCL
or other compilers until the end of the current compilation-unit.
These warnings notably include forward references to functions
and variables. In the previous versions of ASDF, these warnings
were output at the end of the build the first time a file was built,
but not checked, and not displayed afterward. If in ASDF 3 you
(uiop:enable-deferred-warnings), these warnings are
displayed and checked every time a system is compiled or loaded.
These checks help catch more bugs, but enabling them prevents
the successful loading of a lot of systems in Quicklisp that have
such bugs, even though the functionality for which these systems
are required isn’t affected by these bugs. Until there exists some
configuration system that allows developers to run all these checks
on new code without having them break old code, the feature will
have to remain disabled by default.

3.4 Underspecification Creates Portability Landmines
The CL standard leaves many things underspecified about path-
names in an effort to define a useful subset common to many then-
existing implementations and filesystems. However, the result is
that portable programs can forever only access but a small subset
of the complete required functionality. This result arguably makes
the standard far less useful than expected (see section 6). The les-
son is don’t standardize partially specified features. It’s better to
standardize that some situations cause an error, and reserve any res-
olution to a later version of the standard (and then follow up on it),
or to delegate specification to other standards, existing or future.

There could have been one pathname protocol per operating
system, delegated to the underlying OS via a standard FFI. Li-
braries could then have sorted out portability over N operating sys-
tems. Instead, by standardizing only a common fragment and let-
ting each of M implementations do whatever it can on each oper-
ating system, libraries now have to take into account N*M combi-
nations of operating systems and implementations. In case of dis-
agreement, it’s much better to let each implementation’s variant
exist in its own, distinct namespace, which avoids any confusion,
than have incompatible variants in the same namespace, causing
clashes.

Interestingly, the aborted proposal for including defsystem
in the CL standard was also of the kind that would have specified
a minimal subset insufficient for large scale use while letting the
rest underspecified. The CL community probably dodged a bullet
thanks to the failure of this proposal.

3.5 Safety before Ubiquity
Guy Steele has been quoted as vaunting the programmability of
Lisp’s syntax by saying: If you give someone Fortran, he has
Fortran. If you give someone Lisp, he has any language he pleases.
Unhappily, if he were speaking about CL specifically, he would
have had to add: but it can’t be the same as anyone else’s.

Indeed, syntax in CL is controlled via a fuzzy set of global
variables, prominently including the *readtable*. Making non-
trivial modifications to the variables and/or tables is possible, but
letting these modifications escape is a serious issue; for the author
of a system has no control over which systems will or won’t be
loaded before or after his system — this depends on what the user
requests and on what happens to already have been compiled or
loaded. Therefore in absence of further convention, it’s always a
bug to either rely on the syntax tables having non-default values
from previous systems, or to inflict non-default values upon next
systems. What is worse, changing syntax is only useful if it also
happens at the interactive REPL and in appropriate editor buffers.
Yet these interactive syntax changes can affect files built interac-
tively, including, upon modification, components that do not de-
pend on the syntax support, or worse, that the syntax support de-
pends on; this can cause catastrophic circular dependencies, and
require a fresh start after having cleared the output file cache. Sys-
tems like named-readtables or cl-syntax help with syntax
control, but proper hygiene isn’t currently enforced by either CL or
ASDF, and remains up to the user, especially at the REPL.

Build support is therefore strongly required for safe syntax
modification; but this build support isn’t there yet in ASDF 3.
For backward-compatibility reasons, ASDF will not enforce strict
controls on the syntax, at least not by default. But it is easy to
enforce hygiene by binding read-only copies of the standard syntax
tables around each action. A more backward-compatible behavior
is to let systems modify a shared readtable, and leave the user
responsible for ensuring that all modifications to this readtable used
in a given image are mutually compatible; ASDF can still bind
the current *readtable* to that shared readtable around every
compilation, to at least ensure that selection of an incompatible

9 2017/5/13

readtable at the REPL does not pollute the build. A patch to this
effect is pending acceptance by the new maintainer. Note that for
full support of readtable modification, other tools beside ASDF will
have to be updated too: SLIME, the Emacs mode for CL, as well as
its competitors for VIM, climacs, hemlock, CCL-IDE, etc.

Until such issues are resolved, even though the Lisp ideal is
one of ubiquitous syntax extension, and indeed extension through
macros is ubiquitous, extension though reader changes are rare in
the CL community. This is in contrast with other Lisp dialects, such
as Racket, that have succeeded at making syntax customization
both safe and ubiquitous, by having it be strictly scoped to the
current file or REPL. Any language feature has to be safe before
it may be ubiquitous; if the semantics of a feature depend on
circumstances beyond the control of system authors, such as the
bindings of syntax variables by the user at his REPL, then these
authors cannot depend on this feature.

3.6 Final Lesson: Explain it
While writing this article, we had to revisit many concepts and
pieces of code, which led to many bug fixes and refactorings
to ASDF and cl-launch. An earlier interactive "ASDF walk-
through" via Google Hangout also led to enhancements. Our expe-
rience illustrates the principle that you should always explain your
programs: having to intelligibly verbalize the concepts will make
you understand them better.

Appendices
4. Appendix A: ASDF 1, a defsystem for CL
4.1 A brief history of ASDF

In the early history of Lisp, back when core memory was expensive,
all programs fit in a deck of punched cards. As computer systems
grew, they became files on a tape, or, if you had serious money, on
a disk. As they kept growing, programs would start to use libraries,
and not be made of a single file; then you’d just write a quick
script that loaded the few files your code depended on. As software
kept growing, manual scripts proved unwieldy, and people started
developing build systems. A popular one, since the late 1970s, was
make.

Ever since the late 1970s, Lisp Machines had a build system
called DEFSYSTEM. In the 1990s, a portable free software reimple-
mentation, mk-defsystem, became somewhat popular. By 2001,
it had grown crufty and proved hard to extend, so Daniel Barlow
created his own variant, ASDF, that he published in 2002, and that
became an immediate success. Dan’s ASDF was an experiment in
many ways, and was notably innovative in its extensible object-
oriented API and its clever way of locating software. See section 4.

By 2009, Dan’s ASDF 1 was used by hundreds of software
systems on many CL implementations; however, its development
cycle was dysfunctional, its bugs were not getting fixed, those bug
fixes that existed were not getting distributed, and configuration
was noticeably harder that it should have been. Dan abandoned
CL development and ASDF around May 2004; ASDF was loosely
maintained until Gary King stepped forward in May 2006. After
Gary King resigned in November 2009, we took over his position,
and produced a new version ASDF 2, released in May 2010, that
turned ASDF from a successful experiment to a product, making it
upgradable, portable, configurable, robust, performant and usable.
See section 5.

The biggest hurdle in productizing ASDF was related to dealing
with CL pathnames. We explain a few salient issues in section 6.

While maintaining ASDF 2, we implemented several new fea-
tures that enabled a more declarative style in using ASDF and CL
in general: declarative use of build extensions, selective control of

the build, declaration of file encoding, declaration of hooks around
compilation, enforcement of user-defined invariants. See section 7.

Evolving ASDF was not monotonic progress, we also had many
failures along the way, from which lessons can be learned. See
section 8.

After fixing all the superficial bugs in ASDF, we found there
remained but a tiny bug in its core. But the bug ended up being a
deep conceptual issue with its dependency model; fixing it required
a complete reorganization of the code, yielding ASDF 3. See sec-
tion 9.

4.2 DEFSYSTEM before ASDF

Ever since the late 1970s, Lisp implementations have each been
providing their variant of the original Lisp Machine DEFSYSTEM
(Moon 1981). These build systems allowed users to define systems,
units of software development made of many files, themselves of-
ten grouped into modules; many operations were available to trans-
form those systems and files, mainly to compile the files and to
load them, but also to extract and print documentation, to create
an archive, issue hot patches, etc.; DEFSYSTEM users could fur-
ther declare dependency rules between operations on those files,
modules and systems, such that files providing definitions should
be compiled and loaded before files using those definitions.

Since 1990, the state of the art in free software CL build sys-
tems was mk-defsystem (Kantrowitz 1990).21 Like late 1980s
variants of DEFSYSTEM on all Lisp systems, it featured a declar-
ative model to define a system in terms of a hierarchical tree of
components, with each component being able to declare dependen-
cies on other components. The many subtle rules constraining build
operations could be automatically deduced from these declarations,
instead of having to be manually specified by users.

However, mk-defsystem suffered from several flaws, in ad-
dition to a slightly annoying software license. These flaws were
probably justified at the time it was written, several years before
the CL standard was adopted, but were making it less than ideal in
the world of universal personal computing. First, installing a system
required editing the system definition files to configure pathnames,
and/or editing some machine configuration file to define "logical
pathname translations" that map to actual physical pathnames the
"logical pathnames" used by those system definition files. Back
when there were a few data centers each with a full time adminis-
trator, each of whom configured the system once for tens of users,
this was a small issue; but when hundreds of amateur programmers
were each installing software on their home computer, this situa-
tion was less than ideal. Second, extending the code was very hard:
Mark Kantrowitz had to restrict his code to functionality univer-
sally available in 1990 (which didn’t include CLOS), and to add a
lot of boilerplate and magic to support many implementations. To
add the desired features in 2001, a programmer would have had to
modify the carefully crafted file, which would be a lot of work, yet
eventually would probably still break the support for now obsolete
implementations that couldn’t be tested anymore.

4.3 ASDF 1: A Successful Experiment
In 2001, Dan Barlow, a then prolific CL hacker, dissatisfied with
mk-defsystem, wrote a new defsystem variant, ASDF.22

21 The variants of DEFSYSTEM available on each of the major propri-
etary CL implementations (Allegro, LispWorks, and formerly, Genera),
seem to have been much better than mk-defsystem. But they were not
portable, not mutually compatible, and not free software, and therefore mk-
defsystem became de facto standard for free software.
22 In a combined reverence for tradition and joke, ASDF stands for "An-
other System Definition Facility", as well as for consecutive letters on a
QWERTY keyboard.

10 2017/5/13

Thus he could abandon the strictures of supporting long obso-
lete implementations, and instead target modern CL implementa-
tions. In 2002, he published ASDF, made it part of SBCL, and
used it for his popular CL software. It was many times smaller
than mk-defsystem (under a thousand line of code, instead of
five thousand), much more usable, easy to extend, trivial to port
to other modern CL implementations, and had an uncontroversial
MIT-style software license. It was an immediate success.

ASDF featured many brilliant innovations in its own right.
Perhaps most importantly as far as usability goes, ASDF clev-

erly used the *load-truename* feature of modern Lisps,
whereby programs (in this case, the defsystem form) can iden-
tify from which file they are loaded. Thus, system definition files
didn’t need to be edited anymore, as was previously required with
mk-defsystem, since pathnames of all components could now
be deduced from the pathname of the system definition file itself.
Furthermore, because the truename resolved Unix symlinks, you
could have symlinks to all your Lisp systems in one or a handful
directories that ASDF knew about, and it could trivially find all
of them. Configuration was thus a matter of configuring ASDF’s
central-registry with a list of directories in which to
look for system definition files, and maintaining "link farms" in
those directories — and both aspects could be automated. (See
section 5.3 for how ASDF 2 improved on that.)

Also, following earlier suggestions by Kent Pitman (Pitman
1984), Dan Barlow used object-oriented style to make his def-
system extensible without the need to modify the main source
file.23 Using the now standardized Common Lisp Object System
(CLOS), Dan Barlow defined his defsystem in terms of generic
functions specialized on two arguments, operation and com-
ponent, using multiple dispatch, an essential OO feature unhap-
pily not available in lesser programming languages, i.e. sadly al-
most all of them — they make do by using the "visitor pattern".
Extending ASDF is a matter of simply defining new subclasses of
operation and/or component and a handful of new methods
for the existing generic functions, specialized on these new sub-
classes. Dan Barlow then demonstrated such simple extension with
his sb-grovel, a system to automatically extract low-level de-
tails of C function and data structure definitions, so they may be
used by SBCL’s foreign function interface.

4.4 Limitations of ASDF 1
ASDF was a great success at the time, but after many years, it was
also found to have its downsides: Dan Barlow was experimenting
with new concepts, and his programming style was to write the
simplest code that would work in the common case, giving him
most leeway to experiment. His code had a lot of rough edges:
while ASDF worked great on the implementation he was using
for the things he was doing with it, it often failed in ugly ways
when using other implementations, or exercising corner cases he
had never tested. The naïve use of lists as a data structure didn’t
scale to large systems with thousands of files. The extensibility API
while basically sane was missing many hooks, so that power users
had to redefine or override ASDF internals with modified variants,
which made maintenance costly.

Moreover, there was a vicious circle preventing ASDF bugs
from being fixed or features from being added (Rideau 2009):
Every implementation or software distribution (e.g. Debian) had its
own version, with its own bug fixes and its own bugs; so developers
of portable systems could not assume anything but the lowest
common denominator, which was very buggy. On the other hand,

23 Dan Barlow may also have gotten from Kent Pitman the idea of reifying
a plan then executing it in two separate phases rather than walking the
dependencies on the go.

because users were not relying on new features, but instead wrote
kluges and workarounds that institutionalized old bugs, there was
no pressure for providers to update; indeed the pressure was to not
update and risk be responsible for breakage, unless and until the
users would demand it. Thus, one had to assume that no bug would
ever be fixed everywhere; and for reliability one had to maintain
one’s own copy of ASDF, and closely manage the entire build
chain: start from a naked Lisp, then get one’s fixed copy of ASDF
compiled and loaded before any system could be loaded.24 In the
end, there was little demand for bug fixes, and supply followed by
not being active fixing bugs. And so ASDF development stagnated
for many years.

5. Appendix B: ASDF 2, or Productizing ASDF
In November 2009, we took over ASDF maintainership and devel-
opment. A first set of major changes led to ASDF 2, released in
May 2010. The versions released by Dan Barlow and the maintain-
ers who succeeded him, and numbered 1.x are thereafter referred to
as ASDF 1. These changes are explained in more detail in our ILC
2010 article (Goldman 2010).

5.1 Upgradability
The first bug fix was to break the vicious circle preventing bug
fixes from being relevant. We enabled hot upgrade of ASDF, so
that users could always load a fixed version on top of whatever
the implementation or distribution did or didn’t provide. 25 Soon
enough, users felt confident relying on bug fixes and new features,
and all implementations started providing ASDF 2.

These days, you can (require "asdf") on pretty much
any CL implementation, and start building systems using ASDF.
Most implementations already provide ASDF 3. A few still lag with
ASDF 2, or fail to provide ASDF; the former can be upgraded with
(asdf:upgrade-asdf); all but the most obsolete ones can be
fixed by an installation script we provide with ASDF 3.1.

Upgradability crucially decoupled what ASDF users could rely
on from what implementations provided, enabling a virtuous circle
of universal upgrades, where previously everyone was waiting for
others to upgrade, in a deadlock. Supporting divergence creates
an incentive towards convergence.

24 It was also impossible to provide a well configured ASDF without pre-
loading it in the image; and it was impossible to upgrade ASDF once it
was loaded. Thus Debian couldn’t reliably provide "ready to go" images
that would work for everyone who may or may not need an updated ASDF,
especially not with stability several years forward.
25 In ASDF 3, some of the upgrade complexity described in our 2010 pa-
per was done away with: even though CL makes dynamic data upgrade
extraordinarily easy as compared to other languages, we found that it’s
not easy enough to maintain; therefore instead of trying hard to main-
tain that code, we "punt" and drop in-memory data if the schema has
changed in incompatible ways; thus we do not try hard to provide meth-
ods for update-instance-for-redefined-class. The only po-
tential impact of this reduction in upgrade capability would be users who
upgrade code in a long-running live server; but considering how daunting
that task is, properly upgrading ASDF despite reduced support might be the
least of their problems. To partly compensate this issue, ASDF 3 preemp-
tively attempts to upgrade itself at the beginning of every build (if an up-
grade is available as configured) — that was recommended but not enforced
by ASDF 2. This reduces the risk of either having data to drop from a pre-
vious ASDF, or much worse, being caught upgrading ASDF in mid-flight.
In turn, such special upgrading of ASDF itself makes code upgrade easier.
Indeed, we had found that CL support for hot upgrade of code may exist
but is anything but seamless. These simpler upgrades allow us to simply
use fmakunbound everywhere, instead of having to unintern some
functions before redefinition.

11 2017/5/13

5.2 Portability
A lot of work was spent on portability. Originally written for sbcl,
ASDF 1 eventually supported 5 more implementations: alle-
gro, ccl, clisp, cmucl, ecl. Each implementation shipped
its own old version, often slightly edited; system definition seman-
tics often varied subtly between implementations, notably regard-
ing pathnames. ASDF 2.000 supported 9 implementations, adding:
abcl, lispworks, gcl; system definition semantics was uni-
form across platforms. ASDF 2.26 (last in the ASDF 2 series) sup-
ported 15, adding: cormanlisp, genera, mkcl, rmcl, scl,
xcl. Since then, new implementations are being released with
ASDF support: mocl, and hopefully soon clasp.

ASDF as originally designed would only reliably work on Unix
variants (Linux, BSD, etc., maybe cygwin, and now also MacOS X,
Android, iOS). It can now deal with very different operating system
families: most importantly Windows, but also the ancient MacOS 9
and Genera.

Portability was achieved by following the principle that we
must abstract away semantic discrepancies between underlying
implementations. This is in contrast with the principle apparently
followed by ASDF 1, to "provide a transparent layer on top of the
implementation, and let users deal with discrepancies". ASDF 2
thus started growing an abstraction layer that works around bugs
in each implementation and smoothes out incompatibilities, which
made the ASDF code itself larger, but allowed user code to be
smaller for portable results.

The greatest source of portability woes was in handling path-
names: the standard specification of their behavior is so lacking,
and the implementations so differ in their often questionable be-
havior, that instead of the problem being an abundance of corner
cases, the problem was a dearth of common cases. So great is the
disaster of CL pathnames, that they deserve their own appendix to
this article (see section 6).

Lisp programmers can now "write once, run anywhere", as
far as defining systems go. They still have to otherwise avoid
non-standardized behavior and implementation-specific extensions
if they want their programs to be portable. There are a lot of
portability libraries to assist programmers, but neither ASDF nor
any of them can solve these issues intrinsic to CL, short of portably
implementing a new language on top of it.

Portability decoupled which implementation and operating sys-
tem were used to develop a system from which it could be compiled
with, where previously any non-trivial use of pathnames, filesystem
access or subprocess invocation was a portability minefield.

5.3 Configurability
ASDF 1 was much improved over what preceded it, but its configu-
ration mechanism was still lacking: there was no modular way for
whoever installed software systems to register them in a way that
users could see them; and there was no way for program writers
to deliver executable scripts that could run without knowing where
libraries were installed.

One key feature introduced with ASDF 2 (Goldman 2010)
was a new configuration mechanism for programs to find libraries,
the source-registry, that followed this guiding principle: Each can
specify what they know, none need specify what they don’t.

Configuration information is taken from multiple sources, with
the former partially or completely overriding the latter: argument
explicitly passed to initialize-source-registry, en-
vironment variable, central user configuration file, modular user
configuration directory, central system configuration files, modu-
lar system configuration directories, implementation configuration,
with sensible defaults. Also, the source-registry is optionally capa-
ble of recursing through subdirectories (excluding source control
directories), where *central-registry* itself couldn’t. Soft-

ware management programs at either user or system level could
thus update independent configuration files in a modular way to
declare where the installed software was located; users could man-
ually edit a file describing where they manually downloaded soft-
ware; users could export environment variables to customize or
override the default configuration with context-dependent informa-
tion; and scripts could completely control the process and build
software in a predictable, deterministic way; it’s always possible
to take advantage of a well-configured system, and always possi-
ble to avoid and inhibit any misconfiguration that was out of one’s
control.

A similar mechanism, the output-translations, also allows users
to segregate the output files away from the source code; by default
it uses a cache under the user’s home directory, keyed by imple-
mentation, version, OS, ABI, etc. Thus, whoever or whichever soft-
ware manages installation of source code doesn’t have to also know
which compiler is to be used by which user at what time. The con-
figuration remains modular, and code can be shared by all who trust
it, without affecting those who don’t. The idea was almost as old as
ASDF itself, but previous implementations all had configurability
issues.26

Configurability decoupled use and installation of software: mul-
tiple parties could now each modularly contribute some software,
whether applications, libraries or implementations, and provide
configuration for it without being required to know configuration
of other software; previously, whoever installed software couldn’t
notify users, and users had to know and specify configuration of all
software installed.

26 Debian’s common-lisp-controller (CLC) popularized the tech-
nique as far back as 2002, and so did the more widely portable asdf-
binary-locations (ABL) after it: by defining an :around method
for the output-files function, it was possible for the user to divert
where ASDF would store its output. The fact that this technique could be
developed as an obvious extension to ASDF without the author explicitly
designing the idea into it, and without having to modify the source code, is
an illustration of how expressive and modular CLOS can be.
But apart from its suffering from the same lack of modularity as the
central-registry, CLC and ABL also had a chicken-and-egg
problem: you couldn’t use ASDF to load it, or it would itself be compiled
and loaded without the output being properly diverted, negating any advan-
tage in avoiding clashes for files of other systems.
ABL thus required special purpose loading and configuration in whichever
file did load ASDF, making it not modular at all. CLC tried to solve the issue
by managing installation or all CL software; it failed eventually, because
these efforts were only available to CL programmers using Debian or a few
select other Linux software distributions, and only for the small number of
slowly updated libraries, making the maintainers a bottleneck in a narrow
distribution process. CLC also attempted to institute a system-wide cache
of compiled objects, but this was ultimately abandoned for security issues; a
complete solution would have required a robust and portable build service,
which was much more work than justified by said narrow distribution
process.
The solution in ASDF 2 was to merge this functionality in ASDF itself,
according to the principle to make it as simple as possible, but no simpler.
But whereas ASDF 1 followed this principle under the constraint that the
simple case should be handled correctly, ASDF 2 updated the constraint
to include handling all cases correctly. Dan Barlow’s weaker constraint
may have been great for experimenting, it was not a good one for a robust
product.
Another, more successful take on the idea of CLC, is Zach Beane’s Quick-
lisp (2011): it manages the loading and configuration of ASDF, and can
then download and install libraries. Because it does everything in the user’s
directory, without attempts to share between users and without relying on
support from the system or software distribution, it can be actually ubiq-
uitous. Thanks to ASDF 2’s modular configuration, the Quicklisp-managed
libraries can complement the user’s otherwise configured software rather
than one completely overriding the other.

12 2017/5/13

5.4 Robustness
ASDF 1 used to pay little attention to robustness. A glaring is-
sue, for instance, was causing much aggravation in large projects:
killing the build process while a file was being compiled would
result in a corrupt output file that would poison further builds un-
til it was manually removed: ASDF would fail the first time, then
when restarted a second time, would silently load the partially com-
piled file, leading the developer to believe the build had succeeded
when it hadn’t, and then to debug an incomplete system. The prob-
lem could be even more aggravating, since a bug in the program
itself could be causing a fatal error during compilation (especially
since in CL, developers can run arbitrary code during compilation).
The developer, after restarting compilation, might not see the is-
sue; he would then commit a change that others had to track down
and painfully debug. This was fixed by having ASDF compile into
a temporary file, and move the outputs to their destination only in
case of success, atomically where supported by implementation and
OS. A lot of corner cases similarly had to be handled to make the
build system robust.

We eventually acquired the discipline to systematically write
tests for new features and fixed bugs. The test system itself was
vastly improved to make it easier to reproduce failures and debug
them, and to handle a wider variety of test cases. Furthermore, we
adopted the policy that the code was not to be released unless every
regression test passed on every supported implementation (the list
of which steadily grew), or was marked as a known failure due to
some implementation bugs. Unlike ASDF 1, that focused on getting
the common case working, and letting users sort out non-portable
uncommon cases with their implementation, ASDF 2 followed the
principle that code should either work of fail everywhere the same
way, and in the latter case, fail early for everyone rather than
pass as working for some and fail mysteriously for others. These
two policies led to very robust code, at least compared to previous
CL build systems including ASDF 1.

Robustness decoupled the testing of systems that use ASDF
from testing of ASDF itself: assuming the ASDF test suite is com-
plete enough, (sadly, all too often a preposterous assumption), sys-
tems defined using ASDF 2 idioms run the same way in a great va-
riety of contexts: on different implementations and operating sys-
tems, using various combinations of features, after some kind of
hot software upgrade, etc. As for the code in the system itself — it
might still require testing on all supported implementations in case
it doesn’t strictly adhere to a portable subset of CL (which isn’t au-
tomatically enforceable so far), since the semantics of CL are not
fully specified but leave a lot of leeway to implementers, unlike e.g.
ML or Java.

5.5 Performance
ASDF 1 performance didn’t scale well to large systems: Dan Bar-
low was using the list data structure everywhere, leading to
worst case planning time no less than O(n4) where n is the total size
of systems built. We assume he did it for the sake of coding sim-
plicity while experimenting, and that his minimalism was skewed
by the presence of many builtin CL functions supporting this old
school programming style. ASDF did scale reasonably well to a
large number of small systems, because it was using a hash-table to
find systems; on the other hand, there was a dependency propaga-
tion bug in this case (see section 9). In any case, ASDF 2 followed
the principle that good data structures and algorithms matter,
and should be tailored to the target problem; it supplemented or re-
placed the lists used by ASDF 1 with hash-tables for name lookup
and append-trees to recursively accumulate actions, and achieved
linear time complexity. ASDF 2 therefore performed well whether
or not the code was split in a large number of systems.

Sound performance decoupled the expertise in writing systems
from the expertise in how systems are implemented. Now, develop-
ers could organize or reorganize their code without having to shape
it in a particular way to suit the specific choice of internals by ASDF
itself.

5.6 Usability
Usability was an important concern while developing ASDF 2.
While all the previously discussed aspects of software contribute
to usability, some changes were specifically introduced to improve
the user experience.

As a trivial instance, the basic ASDF invocation was the clumsy
(asdf:operate ’asdf:load-op :foo) or (asdf:oos
’asdf:load-op :foo). With ASDF 2, that would be the more
obvious (asdf:load-system :foo)27.

ASDF 2 provided a portable way to specify pathnames by adopt-
ing Unix pathname syntax as an abstraction, while using standard
CL semantics underneath. It became easy to specify hierarchical
relative pathnames, where previously doing it portably was ex-
tremely tricky. ASDF 2 similarly provided sensible rules for path-
name types and type overrides. (See section 6.) ASDF made it hard
to get pathname specifications right portably; ASDF 2 made it hard
to get it wrong or make it non-portable.

Usability decoupled the knowledge of how to use ASDF from
both the knowledge of ASDF internals and CL pathname idiosyn-
crasies. Any beginner with a basic understanding of CL and Unix
pathnames could now use ASDF to portably define non-trivial sys-
tems, a task previously reserved to experts and/or involving copy-
pasting magical incantations. The principle followed was that the
cognitive load on each kind of user must be minimized.

6. Appendix C: Pathnames
6.1 Abstracting over Pathnames
The CL standard specifies a pathname class that is to be used
when accessing the filesystem. In many ways, this provides a con-
venient abstraction, that smoothes out the discrepancies between
implementations and between operating systems. In other ways, the
standard vastly underspecifies the behavior in corner cases, which
makes pathnames quite hard to use. The sizable number of issues
dealt by ASDF over the years were related to pathnames and ei-
ther how they don’t match either the underlying operating system’s
notion, or how their semantics vary between implementations. We
also found many outright bugs in the pathname support of several
implementations, many but not all of which have been fixed after
being reported to the respective vendors.

To make ASDF portable, we started writing abstraction func-
tions during the end year of ASDF 1, they grew during the years of
ASDF 2, and exploded during the heavy portability testing that took
place before ASDF 3. The result is now part of the UIOP library
transcluded in ASDF 3. However, it isn’t possible to fully recover
the functionality of the underlying operating system in a portable
way from the API that CL provides. This API is thus what Henry
Baker calls an abstraction inversion (Baker 1992) or, in common
parlance, putting the cart before the horse.

UIOP thus provides its functionality on a best-effort basis,
within the constraint that it builds on top of what the implemen-
tation provides. While the result is robust enough to deal with the

27 load-system was actually implemented by Gary King, the last main-
tainer of ASDF 1, in June 2009; but users couldn’t casually rely on it being
there until ASDF 2 in 2010 made it possible to rely on it being ubiquitous.
Starting with ASDF 3.1, (asdf:make :foo) is also available, mean-
ing "do whatever makes sense for this component"; it defaults to load-
system, but authors of systems not meant to be loaded can customize it to
mean different things.

13 2017/5/13

kind of files used while developing software, that makes UIOP not
suitable for dealing with all the corner cases that may arise when
processing files for end-users, especially not in adversarial situa-
tions. For a complete and well-designed reimplementation of path-
names, that accesses the operating system primitives and libraries
via CFFI, exposes them and abstracts over, in a way portable across
implementations (and, to the extent that it’s meaningful, across op-
erating systems), see IOLib instead. Because of its constraint of
being self-contained and minimal, however, ASDF cannot afford to
use IOLib (or any library).

All the functions in (UIOP) have documentation strings explain-
ing their intended contract.

6.2 Pathname Structure
In CL, a pathname is an object with the following components:

• A host component, which is often but not always nil on Unix
implementations, or sometimes :unspecific; it can also be
a string representing a registered "logical pathname host" (see
section 6.7); and in some implementations, it can be a string
or a structured object representing the name of a machine, or
elements of a URL, etc.

• A device component, which is often but not always nil on
Unix implementations, can be a string representing a device,
like "c" or "C" for the infamous C: on Windows, and can be
other things on other implementations.

• A directory component, which can be nil (or on some imple-
mentations :unspecific), or a list of either :absolute
or :relative followed by "words" that can be strings that
each name a subdirectory, or :wild (wildcard matching any
subdirectory) or :wild-inferiors (wildcard matching
any recursive subdirectory), or some string or structure rep-
resenting wildcards. e.g. (:absolute "usr" "bin"), or
(:relative ".svn"). For compatibility with ancient op-
erating systems without hierarchical filesystems, the directory
component on some implementations can be just a string, which
is then an :absolute.

• A name component, which is often a string, can be nil (or
on some implementations :unspecific), or :wild or some
structure with wildcards, though the wildcards can be repre-
sented as strings.

• A type component, which is often a string, can be nil (or on
some implementations :unspecific), or :wild or some
structure with wildcards, though the wildcards can be repre-
sented as strings.

• A version component, which can be nil (or on some imple-
mentations :unspecific), and for backward compatibility
with old filesystems that supported this kind of file versions, it
can be a positive integer, or :newest. Some implementations
may try to emulate this feature on a regular Unix filesystem.

Previous versions of SCL tried to define additional components
to a pathname, so as to natively support URLs as pathnames, but
this ended up causing extra compatibility issues, and recent ver-
sions fold all the additional information into the host component.

:unspecific is only fully or partly supported on some im-
plementations, and differs from nil in that when you use merge-
pathnames, nil means "use the component from the defaults"
whereas :unspecific overrides it.

Already, UIOP has to deal with normalizing away the ancient
form of the directory component and bridging over ancient imple-
mentations that don’t support pathnames well with function make-
pathname*, or comparing pathnames despite de-normalization
with function pathname-equal.

6.3 Namestrings
The CL standard accepts a strings as a pathname designator in most
functions where pathname is wanted. The string is then parsed into
a pathname using function parse-namestring. A pathname
can be mapped back to a string using namestring. Due to the
many features regarding pathnames, not all strings validly parse to
a pathname, and not all pathnames have a valid representation as a
namestring. However, the two functions are reasonably expected to
be inverse of each other when restricted to their respective output
domains.28

These functions are completely implementation-dependent, and
indeed, two implementations on the same operating system may
do things differently. Moreover, parsing is relative to the host of
a default pathname (itself defaulting to *default-pathname-
defaults*), and even on Unix, this host can be a "logical path-
name", in which case the syntax is completely different from the
usual syntax.

Behavior that vary notably include: escaping of wildcard char-
acters (if done at all) or other characters (dots, colons, backslash,
etc.) handling of filenames that start with a dot ".", catching of
forbidden characters (such as a slash "/" in a name component, of
a dot "." in a type component), etc.

Notably because of wildcard characters, CL namestrings do not
always match the namestrings typically used by the operating sys-
tem and/or by other programming languages, or indeed by other CL
implementations on the same operating system. Also, due to char-
acter encoding issues, size limits, special character handling, and
depending on Lisp implementations and underlying operating sys-
tem, it’s possible that not all byte sequences that the OS may use
to represent filenames may have a corresponding namestring on the
CL side, while not all well-formed CL namestrings have a corre-
sponding OS namestring. For instance, Linux accepts any sequence
of null-terminated bytes as a namestring, whereas Apple’s MacOS
tends to only accept sequence of Unicode characters in UTF-8 Nor-
malization Form D and what Windows wants varies with the API
used. And so UIOP provides parse-native-namestring
and native-namestring to map between pathname objects
and strings more directly usable by the underlying OS. On good
implementations, these notably do a better job than the vanilla
CL functions at handling wildcard characters. Unhappily, on other
implementations they don’t do anything. CL is notably missing a
portable way to escape a namestring to avoid wildcards.

Finally, so that .asd files may portably designate pathnames
of recursive subdirectories and files under a build hierarchy, we
implemented our own parsing infrastructure. Thus, even if the
current pathname host of *default-pathname-defaults*
isn’t a Unix host, indeed even if the operating system isn’t Unix
but Windows, MacOS 9 or Genera, the same .asd file keeps
working unmodified, and correctly refers to the proper filenames
under the current source directory. In UIOP, the main parsing
function is parse-unix-namestring. It’s designed to match
the expectations of a Unix developer rather than follow the CL API.

For instance, you can specify an optional type suffix in a way
that is added to the provided stem rather than "merged" in the style
of make-pathname or merge-pathnames; thus (parse-
unix-namestring "foo-V1.2" :type "lisp") returns

28 Still, on many implementations, filesystem access functions such as
probe-file or truename will return a subtly modified pathname that
looks the same because it has the same namestring, but doesn’t compare
as equal because it has a different version of :version :newest
rather than :version nil. This can cause a lot of confusion and pain.
You therefore should be careful to never compare pathnames or use them
as keys in a hash-table without having normalized them, at which point you
may as well use the namestring as the key.

14 2017/5/13

#p"foo-V1.2.lisp". This contrasts with the idioms pre-
viously used by ASDF 1 in similar situations, which for the
longest time would return #p"foo-V1.lisp". The type may
also be specified as :directory, in which case it treats the
last "word" in the slash-separated path as a directory component
rather than a name and type components; thus, (parse-unix-
namestring "foo-V1.2" :type :directory) returns
#p"foo-V1.2/", at least on a Unix filesystem where the slash
is the directory separator.

Each function in UIOP tries to do the Right Thing™, in its
limited context, when passed a string argument where a pathname
is expected. Often, this Right Thing consists in calling the stan-
dard CL function parse-namestring; sometimes, it’s call-
ing parse-unix-namestring; rarely, it’s calling parse-
native-namestring. And sometimes, that depends on a
:namestring argument, as interpreted by UIOP’s general path-
name coercing function ensure-pathname. To be sure, you
should read the documentation and/or the source code carefully.

6.4 Trailing Slash
Because CL pathnames distinguishes between directory, name and
type components, it must distinguish #p"/tmp/foo.bar" from
#p"/tmp/foo.bar/". Assuming that *default-pathname-
defaults* is a physical Unix pathname, the former is about the
same as (make-pathname :directory ’(:absolute
"tmp") :name "foo" :type "bar") and denotes a file,
whereas the latter is about the same as (make-pathname
:directory ’(:absolute "tmp" "foo.bar") :name
nil :type nil) and denotes a directory. They are very differ-
ent things. Yet to people not familiar with CL pathname, it’s a
common issue to not differentiate between the two, then get bitten
by the system. UIOP implements predicates file-pathname-
p and directory-pathname-p to distinguish between the
two kinds of pathnames (and there are yet more kinds of path-
name objects, because of wildcards). It also provides a function
ensure-directory-pathname to try to add the equivalent
trailing slash after the fact when it was previously omitted.

ASDF 1 notably located systems thanks to a *central-
registry*, a list of expressions that evaluate to directories,
in which to look for .asd files. That was a great innovation of
ASDF compared to its predecessors, that made it much easier to
configure, and ASDF 2 and ASDF 3 still support this feature. But
it was also somewhat quite fragile and easy to misconfigure, the
most recurrent issue being that users familiar with Unix but not CL
pathnames would insert the name of a directory without a trailing
slash "/". CL would parse that as the name of a file in the parent
directory, which, when later merged (see section 6.5) with the name
of a prospective .asd file, would behave as if it were the parent di-
rectory, leading to confusion, defeat and a lot of frustration before
the issue is identified.

Gary King fixed that issue in the late days of ASDF 1 in 2009.
But users couldn’t rely on the fix being present everywhere, since
the availability of ASDF upgrades was limited. Since ASDF 2, you
can.

6.5 Merging Pathnames
CL has an idiom (merge-pathnames pathname defaults)
that ostensibly serves to merge a relative pathname with an absolute
pathname. However, using it properly isn’t trivial at all.

First, CL makes no guarantee that nil is a valid pathname host
component. Indeed, since the pathname syntax may itself vary de-
pending on hosts, there might be no such thing as a pathname with
"no host"; same thing with the device component. Now, merge-
pathnames takes the host from the first argument, if not nil
(and nil isn’t allowed on many implementation); if the intent was

supposed to designate a pathname relative to the second argument,
which might be on a host unknown at the time the first argument
was made or parsed, this will be totally the wrong thing: care must
be taken to pass to merge-pathnames a first argument that has
the correct host and device components, as taken from the second
argument — unless the first argument is itself an absolute pathname
that should not default these components.

To resolve these issues, as well as various other corner cases and
implementation bugs, and to make things fully portable and support
logical pathnames correctly, we ended up completely reimplement-
ing our own variant of merge-pathnames that indeed consid-
ers that the host and device components of a relative pathname are
not to be merged, and called it merge-pathnames* where * is
a common suffix traditionally used in CL to denote variants of a
function.

Also, to make it easier to portably specify in one go the merging
of a relative pathname under a given main directory, UIOP also
provides (subpathname main relative). See the UIOP
documentation for additional options to this function, and yet more
functions.

6.6 nil as a Pathname
The functions defined by the CL standard do not recognize nil
as valid input where a pathname is required. At the same time,
they provide no way to explicit specify "no pathname information
available". This is compounded by the fact that most functions im-
plicitly call merge-pathnames with the default *default-
pathname-defaults* (that thus cannot be nil). Yet, when
the resulting pathname is relative, it may result in the Unix op-
erating system implicitly merging it with the result of getcwd,
according to its own rules different from those of CL.

Some people may be tempted to try use #p"" or (make-
pathname :host nil :device nil :directory nil
:name nil :type nil :version nil) as a neutral path-
name, but even though either or both might work on many im-
plementations most of the time, the former fails catastrophi-
cally if parsed in a context when the *default-pathname-
defaults* is a logical pathname or otherwise non-standard, and
the latter isn’t guaranteed to be valid, since some implementations
may reject nil as a host or device component, or may merge them
implicitly from the defaults. UIOP tries hard to provide function
nil-pathname and variable *nil-pathname*, yet on some
implementations they are not neutral for the standard CL merge-
pathnames, only for UIOP’s merge-pathnames*.

Most pathname-handling functions in UIOP tend to accept nil
as valid input. nil is a neutral element for merge-pathnames*.
Other functions that receive nil where pathname information is
required tend to return nil instead of signaling an error. For in-
stance, subpathname if its first argument is nil returns the
second argument parsed but unmerged, whereas its variant sub-
pathname* in this case returns nil. When in doubt, you should
read the documentation and/or the source code.

As an aside, one issue that *central-registry* had dur-
ing the days of ASDF 1 was that computed entries (as evaluated
by eval) had to always return a pathname object, even when the
computation resulted in not finding anything useful; this could lead
to subtle unwanted complications. Gary King also fixed that in the
late days of ASDF 1, by making ASDF accept nil as a result and
then ignore the entry.

6.7 Logical Pathnames
A logical pathname is a way to specify a pathname under a vir-
tual "logical host" that can be configured independently from the
physical pathname where the file is actually stored on a machine.

15 2017/5/13

Before it may be used, a logical pathname host must be regis-
tered, with code such as follows:

(setf (logical-pathname-translations
"SOME-HOST")

'(("SOURCE;**;*.LISP.*"
"/home/john/src/**/*.lisp.*")

("SOURCE;**;*.ASD.*"
"/home/john/src/**/*.asd.*")

("**;*.FASL.*"
"/home/john/.fasl-cache/**/*.fasl.*")

("**;*.TEMP.*"
"/tmp/**/*.tmp.*")

("**;*.*.*"
"/home/john/data/**/*.*.*")))

The first two lines map Lisp source files and system definitions
under the absolute directory source to a subdirectory in John’s
home; The third line maps fasl files to a cache; the fourth maps files
with a temporary suffix to /tmp; and the fifth one maps all the rest
to a data directory. Thus, the case-insensitive pathname #p"some-
host:source;foo;bar.lisp" (internally stored in upper-
case) would be an absolute logical pathname that is mapped to the
absolute physical pathname /home/john/src/foo/bar.lisp
on that machine; on different machines, it might be be config-
ured differently, and for instance on a Windows machine might be
mapped to C:\Users\jane\Source\foo\bar.lsp.

Problem is, this interface is only suitable for power users: it
requires special setup before anything is compiled that uses them,
typically either by the programmer or by a system administra-
tor, in an implementation-dependent initialization file (and the
#p"..." syntax is implementation-dependent, too). Moreover,
once a string is registered as a logical pathname host, it may shadow
any other potential use that string might have in representing an ac-
tual host according to some implementation-dependent scheme.
Such a setup is therefore not modular, and not robust: as an author,
to be sure you’re not interfering with any other piece of software,
you’d need to avoid all the useful hostnames on all Lisp installa-
tions on the planet; more likely, as a system administrator, you’d
need to audit and edit each and every piece of Lisp software to
rename any logical pathname host that would clash with a useful
machine name. All of this made sense in the 1970s, but already
no more in the mid 1990s, and not at all in the 2010s. "Logical
pathnames" are totally inappropriate for distributing programs as
source code "scripts" to end users. Even programmers who are not
beginners will have trouble with "logical pathnames".

Importantly, the standard specifies that only a small subset of
characters is portably accepted: uppercase letters, digits, and hy-
phens. When parsed, letters of a logical pathname are converted
to uppercase; once mapped to physical pathnames, the uppercase
letters are typically converted to whatever is conventional on the
destination pathname host, which these days is typically lowercase,
unlike in the old days. Logical pathnames also use the semi-colon
";" as directory separator, and, in a convention opposite to that of
Unix, a leading separator indicates a :relative pathname direc-
tory whereas absence thereof indicates an :absolute pathname
directory. This makes the printing of standard logical pathnames
look quite unusual and the distraction generated is a minor nui-
sance.

Most implementations actually accept a preserved mix of low-
ercase and uppercase letters without mapping them all to upper-
case. On the one hand, that makes these logical pathnames more
useful to users; on the other hand, this doesn’t conform to the stan-
dard. One implementation, SBCL, strictly implements the standard,
in the hope of helping programmers not accidentally write non-
conformant programs, but, actually makes it harder to portably use

logical pathnames, especially since it’s the only implementation
doing this (that I know of).

Finally, because the specification involves matching patterns in
a sequence until a first match is found, which is inefficient, and
because the feature isn’t popular for all the above reasons, imple-
mentations are unlikely to be fast at translating logical pathnames,
and especially not for large lists of translations; even if optimized
translation tables were made, there is no incremental interface to
modifying such tables. Logical pathnames thus intrinsically do not
scale.

Until we added more complete tests, we found that logical
pathname support tended to bitrot quickly. Adding tests revealed
a lot of discrepancies and bugs in implementations, that entailed
a lot of painful work. For instance, subtle changes in how we
search for .asd files may have caused logical pathnames be-
ing translated to physical pathnames earlier than users might ex-
pect. The use of truename, implicitly called by directory
or probe-file, would also translate away the logical pathname
as well as symlinks. Some implementations, probably for san-
ity, translate the logical pathname to a physical pathname before
they bind *load-pathname*: indeed code that includes literal
#p"pathname/objects" when read while the *default-
pathname-defaults* is "logical", or when such namestrings
are merged with the *load-pathname*, may fail in mysteri-
ous ways (including ASDF itself at some point during our develop-
ment).

Many implementations also had notable bugs in some corner
cases, that we discovered as we added more tests that ASDF worked
well with logical-pathnames; this suggests that logical pathnames
are not a widely used feature. Indeed, we estimate that only a
handful or two of old school programmers worldwide may be using
this feature still. Yet, despite our better sense, we sunk vast amounts
of time into making ASDF support them29 for the sake of this sacred
backward compatibility and the pride of hushing the criticism by
this handful of ungrateful old school programmers who still use
them. The days of work poured into getting logical pathnames to
work were probably not well spent.

In any case, this all means that nowadays, logical pathnames
are always a bad idea, and we strongly recommend against using
these ill "logical" pathnames. They are a hazard to end users. They
are a portability nightmare. They can’t reliably name arbitrary files
in arbitrary systems. In locating source code, it’s vastly inferior
to the ASDF 2 source-registry. As a programmer interface,
it’s inferior to ASDF’s asdf:system-relative-pathname
function that uses a system’s base directory as the first argument to
UIOP’s subpathname function.

6.8 Portability Done Right
Because of all the parsing issues above, trying to specify relative
pathnames in ASDF 1 was very hard to do in a portable way. Some
would attempt to include a slash "/" in places that ASDF passed as
a name component to make-pathname, notably the name of an
ASDF component (confusingly, a completely different concept
despite the same name). This would work on some lax implemen-
tations on Unix but would fail outright on stricter implementations
and/or outside Unix (remarkably, SBCL, that is usually stricter than
other implementations, counts as lax in this case). Some would try
to use #.(merge-pathnames ...) to construct pathnames at
read-time, but few would understand the complexity of pathname
merging well enough to do it just right, and the results would be
highly non-portable, with corner cases galore.

29 We always believe it’s a small bug that will be fixed in the next half-hour.
After hours of analysis and false tracks, we finally understand the issue for
good, and just do it... until we find the next issue, and so on.

16 2017/5/13

ASDF 2 solved the entire situation by standardizing on its own
portable Unix-like syntax for pathnames. Only then, could the same
specification be used on all supported platforms with the same se-
mantics. Once again, portability was achieved by systematically
abstracting away semantic discrepancies between underlying im-
plementations.

For instance, the common case of a simple component definition
(:file "foo"), with no special character of any kind, only
letters, digits and hyphens, was always portably treated by ASDF
as meaning a file named "foo.lisp" in the current system’s or
module’s directory. But nothing else was both portable and easy.

If you wanted your file to have a dot in its name, that was
particularly tricky. In Dan Barlow’s original ASDF, that used a
simple make-pathname, you could just specify the name with
the dot as in (:file "foo.bar"), which would yield file
#p"foo.bar.lisp", but trying that on a class that didn’t spec-
ify a type such as (:static-file "READ.ME") would yield
an error on SBCL and other implementations, because it isn’t ac-
ceptable to have a dot in the name yet no type you should instead
separate out a type component — unless it’s a single dot is at the
beginning, indicating a Unix hidden file. In latter variants of ASDF
1, the above static-file example would work, with an elaborate sys-
tem to extract the type; however, the former example would now
fail subtly, with the type "bar" ending up overridden by the type
"lisp" from the class. I eventually fixed the issue in the build
system at work by overriding key functions of ASDF, and got the
fix accepted upstream shortly before I became maintainer.30

If you wanted your file to have a different type, that was also
quite hard. You could specify an explicit :pathname #p"foo.l"
option to each and every component, redundantly specifying the
file name in an error-prone way, or you had to define a new compo-
nent class using a cumbersome protocol (see section 8.8). But you
couldn’t specify a file with no type when the class specified one.

The situation was much worse when dealing with subdirec-
tories. You could naïvely insert a slash "/" in your component
name, and ASDF would put it in the name component of the path-
name, which would happen to work on SBCL (that would be lax
about it, contrary to its usual style), but would be illegal on many
other implementations, and was not generally expected to work
on a non-Unix operating system. You could try to provide an ex-
plicit pathname option to your component definition as in (:file
"foo/bar" :pathname #p"foo/bar.lisp"), but in ad-
dition to being painfully redundant, it would still not be portable
to non-Unix operating systems (or to a "logical pathname" setup).
A portable solution involved using merge-pathnames inside a
reader-evaluation idiom #.(merge-pathnames ...), which
in addition to being particularly verbose and ugly, was actually
quite tricky to get right (see section 6.5). As for trying to go back
a level in the filesystem hierarchy, it was even harder: #p"../"
was at least as unportable as the pathname literal syntax in gen-
eral, and to use merge-pathnames you’d need to not use ".."
as a directory component word, but instead use :back, except on
implementations that only supported :up, or worse.

Finally, there was no portable way to specify the current di-
rectory: none of "", ".", "./", #p"", #p".", #p"./" led to
portable outcome, and they could all mean something completely
different and usually wrong in "logical pathname" context. Thus,
if you were in a module "this-module" and wanted to define
a submodule "that-submodule" that doesn’t define a subdi-

30 It is remarkable that CL makes it possible to patch code without having
to modify source files. This makes it possible to the use unmodified source
code of libraries or compilers with uncooperative or unavailable authors, yet
get bugs fixed. It is also important for temporary fixes in "release" branches
of your code. Maintenance costs are of course much reduced if you can get
your fix accepted by the upstream software maintainer.

rectory but shares that of "this-module" with ASDF 2 you can
portably specify :pathname "", but back in the days of ASDF
1, if you wanted to be completely portable, you had to specify the
following, though you could define a variable rather than repeat the
computation:
:pathname
#.(make-pathname

:name nil :type nil :version nil
:defaults *load-truename*)

If you wanted to make it into a different directory, with ASDF 2 or
later you could use "../foo/bar" but with ASDF 1 the portable
way to do it was:
:pathname
#.(merge-pathnames

(make-pathname
:name nil :type nil :version nil
:directory '(:relative :back "foo" "bar")
:defaults *load-truename*)

load-truename)
Except that :back isn’t completely portable to all implementa-
tions, and you might have to use the subtly different :up instead
(if supported).

Starting with ASDF 2, things became much simpler: Users spec-
ify names that are uniformly parsed according to Unix syntax on
all platforms. Each component name (or explicit pathname over-
ride, if given as a string), is combined with the specified file type
information and correctly parsed into relative subdirectory, name
and type pathname components of a relative pathname object that
relative pathname is merged into whichever directory is being con-
sidered, that it is relative to. Under the hood, the proper combi-
nations of make-pathname and merge-pathnames are used,
taking into account any quirks and bugs of the underlying imple-
mentation, in a way that works well with either logical pathnames
or non-Unix physical pathnames. A type, if provided by the com-
ponent or its class and not nil, is always added at the end of the
provided name. If the type is nil, nothing is added and the type
is extracted from the component name, if applicable. You could al-
ways explicitly override the class-provided type with :type "l"
or :type nil. No surprise, no loss of information, no complex
workarounds.

7. Appendix D: ASDF 2.26, more declarative
7.1 defsystem Dependencies
ASDF 2 introduced a :defsystem-depends-on option to
defsystem, whereby a system could declaratively specify depen-
dencies on build extensions. Previously, users would imperatively
load any extension they need: their .asd system definition file
would include (asdf:load-system "cffi-grovel") be-
fore the extension may be used by defsystem. Indeed, a .asd
file is just a CL source file that is loaded in a controlled context
and may contain arbitrary side-effects; now such side-effects are
frowned upon and a declarative style is more maintainable, hence
this improvement.

However, this feature was only made usable in 2.016 (June
2011), when ASDF started to accept keywords as designators for
classes defined in an extension in the :asdf package. Before then,
there was a chicken-and-egg problem: the defsystem form con-
taining the :defsystem-depends-on declaration was read
before the extension was loaded (what’s more, ASDF 1 and 2 read
it in a temporary package); therefore, the extension had nowhere to
intern or export any symbol that the rest of the defsystem form
could use.

These days, this feature is the recommended way of loading
extensions. But from the story of it, we can learn that a feature

17 2017/5/13

isn’t finished until it’s tested and used in production. Until then,
there are likely issues that need to be addressed.

As an example use, the proper way to use the CFFI library is to
use :defsystem-depends-on ("cffi-grovel") as be-
low, which defines the class asdf::cffi-grovel, that can be
designated by the keyword :cffi-grovel amongst the compo-
nents of the system:

(defsystem "some-system-using-ffi"
:defsystem-depends-on ("cffi-grovel")
:depends-on ("cffi")
:components
((:cffi-grovel "foreign-functions")

...))

7.2 Selective System Forcing
Since the beginning, ASDF has had a mechanism to force recompi-
lation of everything:

(asdf:oos 'asdf:load-op 'my-system :force t)

In ASDF 2 that would be more colloquially:

(asdf:load-system 'my-system :force :all)

In 2003, Dan Barlow introduced a mechanism to selectively
:force recompilation of some systems, but not others: :force
:all would force recompilation of all systems; :force t
would only force recompilation of the requested system; and
:force ’(some list of systems) would only force re-
compilation of the specified systems. However, his implementation
had two bugs: :force t would continue to force everything,
like :force :all; and :force ’(some list of sys-
tems) would cause a runtime error (that could have been found at
compile-time with static strong typing).

The bugs were found in 2010 while working on ASDF 2;
they were partially fixed, but support for the selective syntax was
guarded by a continuable error message inviting users to contact
the maintainer.31 Despite the feature demonstrably not ever having
had any single user, it had been partially documented, and so was
finally fixed and enabled in ASDF 2.015 (May 2011) rather than
removed.

The feature was then extended in ASDF 2.21 (April 2012) to
cover a negative force-not feature, allowing the fulfillment of
a user feature request: a variant require-system of load-
system that makes no attempt to upgrade already loaded systems.
This is useful in some situations: e.g. where large systems already
loaded and compiled in a previously dumped image are known to
work, and need to promptly load user-specified extensions, yet do
not want to expensively scan every time the (configured subset of
the) filesystem for updated (or worse, outdated) variants of their
source code. The hook into the require mechanism was then
amended to use it.32

This illustrates both Dan Barlow’s foresight and his relative lack
of interest in developing ASDF beyond the point where it got the
rest of his software off the ground; and by contrast the obsession to
detail of his successor.

31 CL possesses a mechanism for continuable errors, cerror, whereby
users can interactively or programmatically tell the system to continue
despite the error.
32 The two mechanisms were further enhanced in ASDF 3, then in ASDF 3.1.
One conceptual bug was having the :force mechanism take precedence
over :force-not; this didn’t fit the common use cases of users having
a set of immutable systems that shouldn’t be refreshed at all, and needing
to stop a :force :all from recursing into them. This was only fixed in
ASDF 3.1.

7.3 Encoding Support
Back in 2002, most programmers were still using 8-bit characters in
various encodings (latin1, koi8-r, etc.), and Emacs did not support
Unicode very well. ASDF 1 in its typical minimalist manner, just
didn’t specify any :external-format and let the programmer
deal with the implementation-dependent configuration of character
encodings, if such an issue mattered to them.

By 2012, however, Unicode was ubiquitous, UTF-8 was a de
facto standard, and Emacs supported it well. A few authors had
started to rely on it (if only for their own names). Out of over 700
systems in Quicklisp, most were using plain ASCII, but 87 were
implicitly using :utf-8, and 20 were using some other encoding,
mostly latin1.

Now, one would sometimes attempt loading a latin1 encoded
file in a Lisp expecting strictly UTF-8 input, resulting in an error, or
loading a UTF-8 or Shift-JIS encoded file in a Lisp expecting latin1,
resulting in mojibake. The SBCL implementation was notable for
simultaneously (and legitimately) (1) setting the default encoding
in a given session from the same environment variables as the libc
locale, which could vary wildly between developers, even more so
hypothetical end-users, and (2) issuing an error rather than accept
invalid UTF-8. Unhappily, the person who chose the encoding was
whoever wrote the code, and had no control on what environment
was used at compile-time; whereas the user, who may or may not be
aware of such encoding issues, had no idea what encoding an author
used, and didn’t care until an error was raised from an unknown
library that was depended on by a program he used or wrote.

To make the loading of library code more predictable, ASDF 2
added an :encoding option to defsystem, so that files may be
loaded in the encoding they were written in, as determined by the
author, irrespective of which encoding the user may otherwise be
using. Once again, the principle each can specify what they know,
none need specify what they don’t.

The encoding option of a system or module is inherited by
its components, if not overridden. The accepted syntax of the op-
tion is a keyword, abstracting over the implementation-dependent
:external-format, which isn’t specified by the CL stan-
dard.33 The only encoding supported out of the box is :utf-8,
because that’s the only universally accepted encoding that’s use-
ful; but if your system specifies :defsystem-depends-on
("asdf-encodings"), it can use any encoding your imple-
mentation supports. However, the only other completely portable
option is :latin1, the previous implicit standard being evolved
from. On old implementations without support for Unicode or
external-formats, ASDF falls back to using the 8-bit implemen-
tation :default.

Though :utf-8 was already the de facto standard, the default
was initially left to :default for backward-compatibility, to give
time to adapt to the twenty or so authors of systems that were using
incompatible encodings, half of which fixed their code within a few
days or weeks, and half of which never did. This default changed
to :utf-8 one year later, with the pre-release of ASDF 3, under
the theory that it’s good practice to release all small backward-
incompatible changes together with a big one, since that’s the
time users have to pay attention, anyway. Though it did break the
few remaining unmaintained systems, the new defaults actually
made things more reliable for a hundred or so other systems, as
witnessed by the automated testing tool cl-test-grid.

Because we had learned that a feature isn’t complete until it’s
tested, we published a system that demonstrates how to put this

33 And indeed, though all other implementations that support Unicode ac-
cept the keyword :utf-8 as an external format, GNU CLISP, always
the outlier, wants the symbol charset:utf-8 in a special package
charset.

18 2017/5/13

new infrastructure to good use: lambda-reader, a utility that
lets you use the Unicode character λ instead of lambda in your
code.34 Originally based on code by Brian Mastenbrook, lambda-
reader was modified to fall back gracefully to working mojibake
where Unicode isn’t supported, and to offer the syntax modification
via the de facto standard named-readtables extension. Users
still have to enable the modified syntax at the beginning of every
file, and carefully disable it at the end, least they cause havoc in
other files or at the REPL (see section 3.5).

7.4 Hooks around Compilation
A recurrent question to ASDF developers was about how to prop-
erly modify the CL syntax for some files, without breaking the
syntax for other files: locally giving short nicknames to packages,
changing the readtable, or the reader function, etc.

The original answer was to define a new subclass my-cl-
file of cl-source-file, then a method on perform :around
((o compile-op) (c my-cl-file)), wrapping the usual
methods inside a context with modified syntax. However, not only
was it a cumbersome interface, the seldom used operation load-
source-op also redundantly needed the same method yet was
often forgotten, and so did any future such imaginable operation
involving reading the file.

A better, more declarative interface was desirable, and imple-
mented in ASDF 2.018 (October 2011): each component can spec-
ify an :around-compile option or inherit it from its parent; if
not nil, this designates a function to be called around compilation
(but not loading, to preserve the semantics of bundle operations).
An explicit nil is often needed in the first few files of a system,
before the usual function was defined.

Actually, the function usually cannot be named by a sym-
bol, because at the time the .asd file is read, none of the
code has been compiled, and the package in which the sym-
bol will be interned doesn’t exist yet; therefore, ASDF 2.019
(November 2011) made it possible to designate a function by
a string that will be read later. Hence, for instance, systems
defined in Stelian Ionescu’s IOLib,35 use :around-compile
"iolib/asdf:compile-wrapper", except for the system
iolib/asdf itself, that defines the package and the function.

7.5 Enforcing User-Defined Invariants
Relatedly ASDF 2.23 (July 2012) added the ability for users to de-
fine invariants that are enforced when compiling their code. Indeed,
a file might be compliant CL code, and compile correctly, yet fail
to satisfy application-specific invariants essential to the correct be-
havior of the application. Without the build system checking after
every file’s compilation, users would be left with an invalid sys-
tem; after they eventually get a runtime error, they would have to
chase which of thousands of files broke the invariant. Thanks to the
:compile-check feature, the :around-compile hook can
tell ASDF to check the invariant before to accept some compilation
output that would otherwise poison future builds (see section 5.4
above about poisoned builds).

There were two notable use cases at ITA Software. In the
simpler one, the error logging infrastructure was registering at
compile-time all strings that could be seen by end-users, to build
a database that could be localized to another language, as per le-
gal requirements of the customer. But it was not enough to reg-

34 Yes, it does feel good to write λ this way, and it does improve code that
uses higher-order functions.
35 IOLib is a comprehensive general purpose I/O library for CL, written by
Stelian Ionescu, that strives at doing the Right Thing™ where many other
libraries sacrifice code quality, feature coverage or portability for the sake
of expediency.

ister strings at compile-time, because unless you were building
everything from scratch in the same process, the compile-time
state was lost before the final build image was dumped. And it
was not possible to register them as part of the macro’s expan-
sion, because this expansion was not for code to be evaluated at
the toplevel, but only for code called conditionally, in exceptional
situations. One solution would have been to side-effect external
files; a better solution was for the macro to defer registration to
a cleanup form, evaluated at the toplevel before the end of the
file’s compilation. Since there is no standard mechanism to achieve
this effect, this required users to explicitly include a (final-
forms) at the end of their file. Now, users are prone to forget-
ting to include such a statement, when they are aware at all that
they need to. But thanks to the new :compile-check feature,
the system could automatically check the invariant that no de-
ferred form should be left dangling without a final-forms,
and reject the file with a helpful error message instructing the
programmer to insert said form. asdf-finalizers, a sepa-
rately distributed ASDF extension, provides such an infrastruc-
ture: its eval-at-toplevel both evaluates a form and defers
it for later inclusion at the top-level, and its final-forms in-
cludes all registered such forms at the top-level; user code can then
specify in their defsystem the :around-compile "asdf-
finalizers:check-finalizers-around-compile"
hook for ASDF to enforce the invariant.

The other use case was similarly solved with asdf-finalizers.
Our data schema included hundreds of parametric types such
as (list-of passenger) of (ascii-string 3 5) (for
strings of ASCII characters length between 3 and 5). Checking that
data verified the proper invariants to avoid inserting corrupted data
records in the database or messaging them to partners was an essen-
tial robustness feature. But to define the type via the CL deftype
mechanism, these types had to expand to things like (and list
(satisfies list-of-passenger-p)), where the predi-
cate function list-of-passenger-p could not be provided
additional parameters, and had to be independently defined by
a form (declare-list-of passenger); there again, this
form could not be part of the type expansion, and was not enough
to evaluate at compile-time, for it had to be explicitly included at
the top-level. Manually managing those forms was a maintenance
burden, and asdf-finalizers eliminated this burden.

The principle we recognized was that every large enough ap-
plication is a Domain-Specific Language with its own invari-
ants, and the programming language is but the implementation
language of the DSL. This implementation is extremely fragile if
it cannot automatically enforce the invariants of the DSL. A good
programming language lets you define new invariants, and a good
build system enforces them. In CL, thanks to ASDF, this can all
happen without leaving the language.

8. Appendix E: Failed Attempts at Improvement
8.1 Failed Experiments
The road from mk-defsystem to ASDF 3 is undeniably one of
overall improvements. Yet, along the way, many innovations were
attempted that didn’t pan out in the end.

For instance, Gary King, when newly made maintainer of ASDF
1, attempted to define some concept of preference files, so that
users may customize how the build takes place, or fix some systems
without modifying their source code. The feature was never used,
and Gary King eventually removed it altogether. Maybe the lack
of a reliable shared version of ASDF, combined with the relative
paucity of hooks in ASDF 1, made the proposition unattractive
and more pain to maintain that it helped. Also, the unconditional
loading of preferences was interfering with the reproducible build

19 2017/5/13

of software, and some users complained, notably the authors of
SBCL itself. On the other hand, sometimes things are broken, and
you do need a non-intrusive way of fixing them. Thus ASDF will
probably grow at some point some way to configure fixes to builds
without patching code, but it isn’t there yet.

Later versions of ASDF 1 also introduced their own general-
ized asdf:around method combination, that wrapped around
the traditional :around method combination, so it may define
some methods without blocking users from defining their own ex-
tensions. This was causing portability issues with implementations
that didn’t fully implement this corner of CLOS. ASDF 2 removed
this feature, instead dividing in two the function perform that
was using it, with the method around it being explicitly called
perform-with-restarts. Indeed, in a cross-compilation en-
vironment, you’d want your restarts in the master Lisp, whereas
the perform method takes place on the target compiler, so it re-
ally makes sense. ASDF 1 authors liked to experiment with how far
they could push the use of CLOS; but at some point there can be
too much fanciness.

As another smaller example of this experimental mindset, Dan
Barlow made a lot of uses of anaphoric macros as then popular-
ized by Paul Graham: ASDF notably made copious use of aif, a
variant of if that implicitly (and "non-hygienically") binds a vari-
able it to the condition expression in its success branch. But the
experiment was eventually considered a failure, and the rough com-
munity consensus of the CL community is that anaphoric macros
are in poor taste, and so in ASDF 3, all remaining occurrences
of aif where replaced by an explicitly binding macro if-let
copied from the alexandria library.

An experiment during the ASDF 2 days was to introduce a vari-
able *compile-file-function* so that ECL could override
ASDF’s compile-file* to introduce behavioral variations be-
tween its C generating compiler and its bytecode generating com-
piler. This proved to be a hard to maintain attractive nuisance, that
only introduced new failure modes (particularly during upgrade)
and required either duplication of code with compile-file*
or ugly refactorings, without bringing any actual meaningful user
extensibility. The real solution was to make ASDF’s compile-
file* itself more clever and aware of the peculiarities of ECL.
Know the difference between the need for extensibility and the need
for correctness; if there’s only one correct behavior, what you need
isn’t extensibility, it’s correctness.

8.2 Partial Solutions
The asdf-binary-locations extension ultimately failed be-
cause it didn’t fully solve its configuration problem, only con-
centrated it in a single point of failure. The *system-cache*
feature to share build outputs between users and associated get-
uid function, introduced by common-lisp-controller and
used by ASDF 2’s output-translation layer, were re-
moved because of security issues. See section 5.3. A :current-
directory keyword in the configuration DSL was removed,
because not only did its meaning vary wildly with implementation
and operating system, this meaning varied with what the value of
that global state at the time the configuration file was read, yet
because of lazy loading and implicit or explicit reloading of con-
figuration, no one was really in control of that value. On the other
hand, the :here keyword was a successful replacement: it refers
to the directory of the configuration file being read, the contents of
which are clearly controlled by whoever writes that file.

In an attempt to solve namespace clashes between .asd files,
Dan Barlow had each of them loaded in its own automatically cre-
ated private package asdf0, asdf1, etc., automatically deleted
afterward. But this didn’t help. If the file contained no new defini-
tion, this hassle wasn’t needed; and if there were new definitions,

either users were using the same kind of prefixing conventions
as were necessary anyway to avoid clashes in existing packages,
or they were defining their own package foo-system, to hold
the definitions. Otherwise, when the definitions were left in the
default package, their symbol became unreachable and the defi-
nitions impossible to debug. In the end, to solve the namespace
issues of CL would have required a complete intrusive change
of the package system, and that was not a task for ASDF. If
anything, faslpath, quick-build and asdf/package-
inferred-system seem to have a better approach at enforcing
namespace discipline.

These failures were all partial solutions, that solved an issue in
the common case (output redirection, namespace hygiene), while
leaving it all too problematic in a concentrate case that didn’t make
the overall issue ultimately easier to solve. More like hiding the dirt
under the carpet than vacuuming it away. The eventual solutions
required confronting the issues head on.

8.3 Attempted Namespace Grabs
In the last days of ASDF 1, there was an attempt to export its small
set of general purpose utilities as package asdf-extensions,
quickly renamed asdf-utilities before the release of ASDF
2, to avoid a misnomer. Still, because ASDF had been changing so
much in the past, and it was hard to rely on a recent version, no
one wanted to depend on ASDF for utilities, especially not when
the gain was so small in the number of functions used. A brief
attempt was make these (now more numerous) utilities available
as a completely separate system asdf-utils with its own copy
of them in its own package. But the duplication felt like both
a waste of both runtime resources and maintainer time. Instead,
asdf-driver, once renamed UIOP, was relatively successful,
because it was also available as a system that could be updated
independently from the rest of ASDF, yet shared the same source
code and same package as the version used by ASDF itself. No
duplication involved. That’s a case where two namespaces for
the same thing was defeating the purpose, and one namespace
necessitated the two things to actually be the same, which could
not be the case until this transclusion made it possible.

In a different failure mode, a brief attempt to give asdf-
driver the nickname d was quickly met with reprobation, as
many programmers feel that that short a name should be available
for a programmer’s own local nicknames while developing. Trying
to homestead the :DBG keyword for a debugging macro met the
same opposition. Some (parts of) namespaces are in the commons
and not up for grabs.

8.4 Not Successful Yet
Some features were not actively rejected, but haven’t found their
users yet.

ASDF 3 introduced build-op as a putative default build op-
eration that isn’t specialized for compiling CL software. But it
hasn’t found its users yet. The associated function asdf:build-
system was renamed asdf:make in ASDF 3.1 in an effort to
make it more usable. Maybe we should add an alias asdf:aload
for asdf:load-system, too.

During the ASDF 2 days, the *load-system-operation*
was designed so that ECL may use load-bundle-op instead of
load-op by default; but that’s still not the case, and won’t be
until ECL users more actively test it, which they might not do until
it’s the default, since they haven’t otherwise heard of it. Indeed, it
seems there are still bugs in corner cases.

8.5 Ubiquity or Bust!
CL possesses a standard but underspecified mechanism for extend-
ing the language: (require "module") loads given "mod-

20 2017/5/13

ule", as somehow provided by the implementation, if not present
yet. Dan Barlow hooked ASDF into SBCL’s require mechanism
ASDF 2 eventually did likewise for ABCL, GNU CLISP, Clozure
CL, CMUCL, ECL, MKCL as well as SBCL. — the list coincides
with that of all maintained free software implementations. Thus,
on all these implementations, users could, after they (require
"asdf"), implicitly rely on ASDF to provide systems that are not
yet loaded.

However, users ended up mostly not using it, we presume for
the following reasons:

• This mechanism is still not ubiquitous enough, therefore for
portability and reliability, you have to know about ASDF and
be able to fall back to it explicitly, anyway; thus trying to "opti-
mize" the easy case with require is just gratuitous cognitive
load for no gain. There again, an underspecified standard ended
being counter-productive.

• The require mechanism purposefully avoids loading a mod-
ule that has already been provided, thereby making it unpopular
in a culture of ubiquitous modifiable source code; if you modi-
fied a file, you really want it to be reloaded automatically.36

8.6 Interface Rigidity
There were many cases during ASDF development where we
wanted to rename a function or change the behavior of a class.
Often, we could do it, but sometimes, we found we couldn’t: when
a generic function was simultaneously called by users and extended
by users; or when a class was simultaneously used as a base class
to inherit from and as a mixin class to get behavior from.

For instance, we found that component-depends-on was a
complete misnomer, and should have been action-depends-
on or something similar. But since there were user systems that
defined methods on this function, our action-depends-on
would have had to call component-depends-on at least as
a fallback. Conversely, because some users do call component-
depends-on, that function would have to call action-depends-
on. To avoid infinite recursion would then require complex ma-
chinery that could prove error-prone, for little gain beside a name
change. The rename was not to happen.

Similarly, we wanted to remove some behavior from the abstract
class operation, but found that some users relied on that be-
havior, so we couldn’t remove it, yet our software relied on that
behavior being removed, so we had to remove it. In the end, we
implemented an ugly mechanism of "negative inheritance", to se-
lectively disable the behavior for appropriate subclasses of oper-
ation while keeping it for legacy operations (see section 2.11).

The perform function also has this general problem: the right
thing would be for users to keep defining methods on perform,
but to never call it directly, instead calling perform-with-
restarts, which allows more modular extensibility.

By contrast, the CLOS protocol was cleverly designed so
that users do not usually call the functions on which they de-
fine methods (such as initialize-instance, or update-
instance-for-redefined-class), and do not usually de-
fine methods on the functions they call.

36 At the same time, ASDF wasn’t reliable in avoiding to reload provided
modules, since most systems don’t call provide with their name to signal
that such call to require was successful, and therefore next call to
require would cause a new load attempt — this was fixed with the
introduction of the above-mentioned require-system in ASDF 2.21 in
2012, and its use instead of load-system. Maybe the more general point
is that ASDF did not have a good story with regards to extending the set of
things that are considered "system" versus "user" defined. ASDF 3.1 adds a
notion of "immutable systems" that should not be refreshed from filesystem
once loaded into memory.

Do not impose overly rigid interfaces on yourself.

8.7 Cognitive Load Matters
While developing ASDF, we sometimes made many things more
uniform at the cost of a slight backward incompatibility with a
few existing systems using kluges. For instance, ASDF 2 made
pathname arguments uniformly non-evaluated in a defsystem
form, when they used to be evaluated for toplevel systems but
not for other (most) components; this evaluation was used by a
few users to use merge-pathnames to portably specify relative
pathnames, a task made unnecessary by ASDF 2 being capable of
specifying these pathnames portably with Unix syntax.

ASDF 3 also removed the magic undocumented capability that
a system could specify a dependency on another system foo by
having (:system "foo") in its list of children components,
rather than "foo" in its depends-on option. One system relied on
it, which had been ported from mk-defsystem where this a valid
documented way of doing things. In ASDF 1 and 2, it seems this
happened to work by accident rather than design, and this accident
had been eliminated in the ASDF 3 refactorings.

At the cost of a few users having to cleanup their code a bit,
we could thus notably reduce the cognitive load on users for
all future systems. No more need to learn complex syntactic and
semantic constraints and even more complex tricks to evade those
constraints.

8.8 Verbosity Smells Bad
Back in the bad old days of ASDF 1, the official recipe, described
in the manual, to override the default pathname type .lisp for a
Lisp source file to e.g. .cl, used to be to define a method on the
generic function source-file-type, specialized on the class
cl-source-file and on your system (in this example, called
my-sys):

(defmethod source-file-type
((c cl-source-file)

(s (eql (find-system 'my-sys))))
"cl")

Some people advertised this alternative, that also used to work,
to define your own sub-class foo-file of cl-source-file,
and use: (defmethod source-file-type ((c foo-file)
(s module)) "foo"). This caused much grief when we tried
to make system not a subclass of module anymore, but both be
subclasses of new abstract class parent-component instead.

In ASDF 2.015, two new subclasses of cl-source-file
were introduced, cl-source-file.cl and cl-source-
file.lsp, that provide the respective types .cl and .lsp,
which covers the majority of systems that don’t use .lisp. Users
need simply add to their defsystem the option :default-
component-class :cl-source-file.cl and files will
have the specified type. Individual modules or files can be over-
ridden, too, either by changing their class from :file to :cl-
source-file.cl, or more directly by specifying a :pathname
parameter.

If needed, users can define their own subclass of cl-source-
file and override its default type, as in:

(defclass my-source-file (cl-source-file)
((type :initform "l")))

Or they can directly override the type while defining a component,
as in:

(:file "foo" :type "l")

In any case, the protocol was roundabout both for users and
implementers, and a new protocol was invented that is both simpler

21 2017/5/13

to use and easier to extend. Verbosity is a bad smell, it suggests
lack of abstraction, or bad abstractions.

8.9 Underspecified Features
While discussing pathnames in section 6, we mentioned how a lot
of the issues were related to the CL standard leaving the semantics
of pathnames underspecified.

We experienced a bit of the same trouble with ASDF itself. For
the sake of extensibility, Dan Barlow added to ASDF 1 a catch-all
"component-properties" feature: system authors could specify for
each component (including systems) an association list of arbitrary
key-value pairs, with :properties ((key1 . value1)
(key2 . value2))37. The idea was that extensions could then
make use of this data without having to explicitly define storage for
it. The problem was, there was no way to associate shared meaning
to these properties to any key-value pair across systems defined by
multiple authors. Amongst the tens of authors that were using the
feature in Quicklisp, no two agreed on the meaning of any key.
Sometimes, general-purpose metadata was made available under
different keys (e.g. #:author-email vs ("system" "au-
thor" "email"). Most of the time, the data was meant to be
processed by a specific extension from the same author.

When we released ASDF 3, we declared the feature as dep-
recated: we defined a few new slots in class system to hold
useful common metadata found previously in such properties:
homepage, mailto, bug-tracker, long-name, source-
control. Otherwise, we recommended that system authors
should specify the :defsystem-depends-on and :class
options, so that their systems could use regular object-oriented
programming to define extended classes with well-defined seman-
tics. What if a list of key-value pairs (aka alist or association-list)
is exactly what a programmer wants? He should define and use
a subclass of system to hold this alist, and then be confident
that his keys won’t clash with anyone else’s. Unhappily, for the
sake of backward-compatibility, we couldn’t actually remove the
:properties feature yet; we also refrained from neutering it;
we just marked it as deprecated for now.

The :properties interface created a commons, that was
mismanaged. The :class interface instead establishes semantic
ownership of extended data elements, and opens a market for good
system extensions.

8.10 Problems with CL itself
Besides the issues with standardization, another general problem
with CL is that its semantics are defined in terms of irreversible
side-effects to a global environment. A better principle would be
to define a programming language’s semantics in terms of pure
transformations with local environments.

There are many lessons to be learned by studying the successes
and failures of the Lisp community. The CL language and commu-
nity are probably too rigid to apply these lessons; but maybe your
current or next programming language can.

9. Appendix F: A traverse across the build
9.1 The End of ASDF 2
While the article itself describes the features introduced by the
various versions of ASDF, this appendix focuses on the bugs that
were the death of ASDF, and its rebirth as ASDF 3.

The ASDF 2 series culminated with ASDF 2.26 in October 2012,
after a few months during which there were only minor cleanups,
portability tweaks, or fixes to remote corner cases. Only one small

37 An experienced Lisp programmer will note that calling it properties then
making it an alist rather than a plist was already bad form.

bug remained in the bug tracker, with maybe two other minor
annoyances; all of them were bugs as old as ASDF itself, related
to the traverse algorithm that walks the dependency DAG.

The minor annoyances were that a change in the .asd system
definition file ought to trigger recompilation in case dependencies
changed in a significant way, and that the traverse algorithm
inherited from ASDF 1 was messy and could use refactoring to al-
low finer and more modular programmatic control of what to build
or not to build. The real but small bug was that dependencies were
not propagated across systems. Considering that my co-maintainer
Robert Goldman had fixed the same bug earlier in the case of de-
pendencies across modules within a system, and that one reason he
had disabled the fix across systems was that some people claimed
they enjoyed the behavior, it looked like the trivial issue of just en-
abling the obvious fix despite the conservative protests of some old
users. It was a wafer thin mint of an issue.

And so, of course, since this was the "last" bug standing, and
longstanding, I opened it... except it was a Pandora’s Box of bigger
issues, where the fixing of one quickly led to another, etc., which
resulted in the explosion of ASDF 2.

9.2 The traverse Algorithm
In the last release by Dan Barlow, ASDF 1.85 in May 2004, the
traverse algorithm was a 77-line function with few comments,
a terse piece of magic at the heart of the original 1101-line build
system.38 Shortly before I inherited the code, in ASDF 1.369 in Oc-
tober 2009, it had grown to 120 lines, with no new comment but
with some commented out debugging statements. By the time of
ASDF 2.26 in October 2012, many changes had been made, for
correctness (fixing the incorrect handling of many corner cases),
for robustness (adding graceful error handling), for performance
(enhancing asymptotic behavior from O(n4) to O(n) by using bet-
ter data structures than naïve lists), for extensibility (moving away
support for extra features such as :version and :feature),
for portability (a trivial tweak to support old Symbolics Lisp Ma-
chines!), for maintainability (splitting it into multiple smaller func-
tions and commenting everything). There were now 8 functions
spanning 215 lines. Yet the heart of the algorithm remained essen-
tially unchanged, in what was now a heavily commented 86-line
function do-traverse. Actually, it was one of a very few parts
of the ASDF 1 code base that we hadn’t completely rewritten.

Indeed, no one really understood the underlying design, why
the code worked when it did (usually) and why it sometimes didn’t.
The original author was long gone and not available to answer ques-
tions, and it wasn’t clear that he fully understood the answers him-
self — Dan Barlow had been experimenting, and how successfully!
His ASDF illustrates the truth that code is discovery at least as
much as design; he had tried many things, and while many failed,
he struck gold once or twice, and that’s achievement enough for
anyone.

Nevertheless, the way traverse recursed into children com-
ponents was particularly ugly; it involved an unexplained special
kind of dependency, do-first, and propagation of a force flag. But
of course, any obvious attempt to simplify these things caused the
algorithm to break somehow.

Here is a description of ASDF 1’s traverse algorithm,
reusing the vocabulary introduced in section 1.1.3.

traverse recursively visits all the nodes in the DAG of ac-
tions, marking those that are visited, and detecting circularities.
Each action consists of an operation on a component; for a simple
CL system with regular Lisp files, these actions are compile-

38 A git checkout of the code has a make target extract that will extract
notable versions of the code, so you can easily look at them and compare
them.

22 2017/5/13

op for compiling the code in the component, and load-op for
loading the compiled code; a component is a system, a recursive
module, or a file (actually a cl-source-file).

When visiting the action of an operation on a component, tra-
verse propagates the operations along the component hierarchy,
first sideway amongst siblings, then specially downwards toward
children: if A depends-on B (in the component DAG), then any
operation on A depends-on same operation on B (this being a
dependency in the distinct action DAG); then, any operation on
A depends-on same operation on each of A’s children (if any).
Thus, to complete the load-op (resp. compile-op) of a mod-
ule, you must first complete the load-op (resp. compile-
op) of all the components it was declared as depends-on, then
on all its own children. Additionally, a load-op on A depends-
on a compile-op on A; this is actually encoded in the exten-
sible function component-depends-on:39 user-defined oper-
ation classes can be defined, with according new methods for the
component-depends-on function.

Now here comes the tricky part. The action of a compile-op
on A has a special do-first dependency on a load-op of each of
A’s sideway dependencies. New do-first dependencies can other-
wise be specified in the defsystem form, though no one does
it and there is no extensible component-do-first function.
These dependencies are included in the plan not only before the
action, but also before any of the operations on the component’s
children; yet they are not visited to determine whether the action
needs to be performed, and so the children are specially visited af-
ter the siblings but before the do-first, yet the do-first are inserted
before the children. And this careful sequencing is baked into the
traverse algorithm rather than reified in dependencies of the ac-
tion graph.

What if you transform these do-first dependencies into regular
in-order-to dependencies? Then there is no incremental compila-
tion anymore, for the first time you attempt to load-op a system,
any file that has dependencies would have a compile-op action
that depends-on the load-op actions on its dependencies, that ob-
viously haven’t been completed yet; and so any file with dependen-
cies would be recompiled every time.

9.3 Force Propagation
Now, as it traversed the action graph, ASDF was propagating
a force flag indicating whether an action needed to be performed
again in the current session due to some of its dependencies itself
needing to be updated.

The original bug was that this flag was not propagated properly.
If some of the sideway dependencies were outdated, then all chil-
dren needed to be forced; but ASDF 1 failed to do so. For instance,
if module A depends-on B, and B is flagged for (re)compilation,
then all the children of A need to be flagged, too. And so Robert
Goldman had fixed this bug in the lead-up to the ASDF 2 release,
by correctly propagating the flag; except for many reasons, he had
declined at the time to propagate it for systems, propagating it only
for modules inside systems. Glancing at the bug three years later,
I naïvely figured it was just a matter of removing this limitation
(2.26.8). Except that fix didn’t work reliably between systems, and
that was why he hadn’t just done it.

If system A depends-on system B, both were once compiled, B
was subsequently modified and separately recompiled, and you’d
ask ASDF to compile A again, then it would not flag B for recom-

39 This function is quite ill-named, since it describes dependencies between
actions, not between components. But the original ASDF 1 code and doc-
umentation doesn’t include an explicit notion of action, except to mention
"visited nodes" in comments about traverse. The notion was made ex-
plicit while implementing ASDF 3, reusing the word from an earlier techni-
cal report by Robbins (Robbins 1985).

pilation, and therefore not flag A. Indeed, each compiled file in A
looked up to date, when comparing it to the corresponding source
file, as ASDF did; since no force flag from B was issued, ASDF
would think it was done. Bug.

For modules within a system, the problem mostly did not arise,
because the granularity of an operate request was a system, and
so there was no way to request compilation of B without triggering
compilation of A. For the bug to be visible within a system, it took
an external build interruption such as a machine crash or power
loss, or an angry programmer killing the process because it is
hosed; in case of such obvious event, programmers would somehow
learn to rebuild from clean if experiencing some seeming filesystem
corruption. On the other hand, across systems, the problem arose
quite naturally: working on a system B, compiling it and debugging
it, then working on a client system A, was not only possible but the
usual workflow.

Seeing no way to fix the bug reliably, Robert had disabled prop-
agation of the flag between systems, which at least was predictable
behavior. The usual workaround was for programmers to force re-
compilation of A using :force t; due to another bug (see sec-
tion 7.2), this was actually recompiling everything, thus eschewing
any other such issue in the current session. The problem, when di-
agnosed, was easily solved in wetware. Except of course it wasn’t
always easy to diagnose, resulting in hours wasted trying to debug
changes that didn’t happen, or worse, to committing bugs one was
not seeing to a shared repository, and having other programmers
try to figure out why their code stopped working after they updated
their checkout.

9.4 Timestamp Propagation
ASDF should have been propagating timestamps, not just force
flags for whether recompilation was needed in the current session!
So we painfully rewrote the existing algorithm to support times-
tamps rather than a flag (2.26.9, 2.26.10).

As for do-first dependencies such as loading a file, we would
stamp a load-op not with the time at which the file was loaded,
but with the timestamp of the file being loaded. As a side benefit,
this wholly eliminated the previous need for kluges to avoid clock
skew between the processor clock and the fileserver clock (though
not clock skew between multiple file servers used during the build).

This wasn’t enough, though. To wholly get rid of do-first, we
had to distinguish between actions that were done in the current
image, versus actions that weren’t done in the current image, but
that might still be up-to-date, because their effects were all in the
filesystem. (This distinction since ASDF 1 had been present in
the function operation-done-p that checked for timestamps
without propagation when there were both input and output files,
and had to come up with an answer when there weren’t.) There-
fore, when examining an action, we must separate the propagated
timestamp from a non-propagated flag telling whether the action
needs to be done in the current image or not. The generic function
compute-action-stamp looks at the dependencies of an ac-
tion, its inputs and outputs on disk, and possible stamps from it be-
ing done earlier in the current image, and returns a stamp for it and
a flag for whether it needs to be done (or redone) in the current im-
age. Thus, if a compiled file is up-to-date on disk and an up-to-date
version was loaded, the compute-action-stamp function re-
turns its timestamp and t (true); if the file is up-to-date on disk but
either it wasn’t loaded yet or an outdated version was loaded, the
compute-action-stamp function returns its timestamp and
nil (false); if the file is missing or out-of-date on disk, then no
up-to-date version could be loaded yet, and compute-action-
stamp returns an infinity marker and nil. The infinity marker
(implemented as boolean t) is so that no timestamp is up-to-date
in comparison, and corresponds to the force flag of ASDF 1. A neg-

23 2017/5/13

ative infinity marker (implemented as boolean nil) also serves to
mark as no dependency.40 (Of course, do-first would come back
with a vengeance, see below section 9.6).

Then, we started to adapt POIU to use timestamps. POIU is an
ASDF extension, originally written by Andreas Fuchs, but or which
we had inherited the maintenance, and that computes a complete
action graph of the build to compile in parallel (see section 1.1.3).
However, our attempt to run the modified POIU would fail, and
we’d be left wondering why, until we realized that was because
we had previously deleted what looked like an unjustified kluge:
POIU, in addition to the dependencies propagated by ASDF, was
also having each node in the action graph depend on the dependen-
cies of each of its transitive parents. Indeed, the loading of depen-
dencies (both in-order-to and do-first) of a component’s parent (and
transitively, ancestors), were all implicitly depended upon by each
action. In an undocumented stroke of genius, Andreas Fuchs had
been making explicit in the DAG the implicit sequencing done by
traverse! However, these parent dependencies were being passed
around inefficiently and inelegantly in a list, updated using ap-
pend for a quadratic worst time cost. This cost wouldn’t explode
as long as there were few systems and modules; but removing the
magic sequencing of traverse to replace it with a different and
inefficient kluge didn’t seem appealing, especially after having op-
timized traverse into being of linear complexity only.

And the solution was of course to explicitly reify those implicit
dependencies in the action graph, making it a complete explicit
model.

9.5 Prepare Operation
And so we introduced a new operation, initially called parent-
load-op (2.26.14), but eventually renamed prepare-op (2.26.21),
corresponding to the steps required to be taken in preparation for a
load-op or compile-op, namely to have completed a load-
op on all the sideway dependencies of all the transitive parents.

Now, unlike load-op and compile-op that both were prop-
agated downward along the dependency graph, from parents to
children, prepare-op had to be propagated upward, from chil-
dren to parents. And so, the operation class had a new special
subclass upward-operation, to be specially treated by tra-
verse...

Or better, the propagation could be moved entirely out of tra-
verse and delegated to methods on component-depends-
on! A mixin class downward-operation would handle the
downward propagation along the component hierarchy for load-
op, compile-op and the likes, whereas upward-operation
would handle prepare-op; sideway-operation would
handle the dependency from prepare-op to the load-op
of a component’s declared depends-on, whereas selfward-
operation would handle the dependency of load-op and
compile-op to prepare-op. Thanks to CLOS multiple in-
heritance and double dispatch, it all fell into place (2.26.21).

40 Interestingly, this compute-action-stamp could be very easily up-
dated to use cryptographic digests of the various files instead of timestamps,
or any other kind of stamp. Because it’s the only function for which the
contents of stamps isn’t opaque, and is a generic function that takes a plan
class as parameter, it might be possible to override this function either for
a new plan class and make that the *default-plan-class*), with-
out destructively modifying any code. However, this hasn’t been tested, so
there’s probably a bug lurking somewhere. Of course, such a modification
cannot be part of the standard ASDF core, because it has to be minimal and
ubiquitous and can’t afford to pull a cryptographic library (for now), but
an extension to ASDF, particularly one that tries to bring determinism and
scalability, could use this very simple change to upgrade from timestamps
to using a persistent object cache addressed by digest of inputs.

For instance, the good old downward propagation was imple-
mented by this mixin:

(defclass downward-operation (operation) ())
(defmethod component-depends-on

((o downward-operation)
(c parent-component))

`((,o ,@(component-children c))
,@(call-next-method)))

The current version is more complex, with all of nine (full-length)
lines of code plus comments and doctrings, for additional back-
ward compatibility and extensibility, but this gives the gist: The
action of a downward operation on a parent component depends-
on the same operation ,o on each of the component’s children,
followed by other dependencies from other aspects of the action.
Had backward-compatibility not been required, the function would
have been called action-depends-on, and its method-
combination would have been append, so that it wouldn’t be
necessary to write that ,@(call-next-method) in each and
every method definition. But backward-compatibility was required.

In any case, classes like load-op and compile-op just in-
herit from this mixin, and voilà, no need for any magic in tra-
verse, which at that point had been broken down in neat small
functions, none more than fifteen lines long. If anything, some
complexity had been moved to the function compute-action-
stamp that computes timestamps and deals with corner cases of
missing inputs or missing outputs, which was 48 heavily com-
mented lines of code (67 as of 3.1.2), just slightly more than the
misdesigned function operation-done-p it was superseding.

Now everything was much cleaner. But of course, it was a mis-
take to call it a victory yet, for do-first came back to enact revenge
for my killing it; and once again, Andreas Fuchs had prophesized
the event and provided a weapon to successfully defend against the
undead.

9.6 Needed In Image
Former do-first dependencies of an action used to not partake in
the forcing, but were nevertheless to be done before the action. Re-
minder: in practice, they were the loading of dependencies before
compiling a file. With the new, saner, action graph, they were now
regular dependencies; the only difference was that they don’t con-
tribute anything to the action stamp (and thus to forcing) that wasn’t
already contributed by the action creating the file they loaded. Still,
they had to be done, in order, in the current image.

Now, this last constraint was utterly defeating the purpose of
some bundle operations, where the whole point of using a bundle
fasl was to not have to load the individual fasls (see section 2.2).
In the old ASDF 1 model, the load-bundle-op depends-on
compile-bundle-op41 which depends-on a lot of individual
compile-op, which only do-first the load-op of their depen-
dencies. Therefore, if the individual files look up to date, no indi-
vidual loading takes place. Except of course ASDF 1 will fail to de-
tect that files are out of date when the system’s dependencies have
changed. In the new ASDF 3 model, the fact that the compile-op
actions are out of date is detected thanks to recursing through their
prepare-op and load-op dependencies; but with the naïve ap-
proach to building a plan that always load dependencies, this causes
all those individual load-op to be issued.

The solution was again suggested by POIU. For the sake of
determining whether an action could be performed in parallel in
a fork, or had to be done in the image of the main process, POIU
had introduced a predicate needed-in-image-p. The notion

41 They were then respectively named load-fasl-op and fasl-op, but
have since be renamed.

24 2017/5/13

was actually suggested by the old method operation-done-p
from Dan Barlow’s original ASDF 1: If an action has any output-
files, then ASDF considers that the operation is worth it for its
output, and should have no meaningful or reliable side-effects in
the current image; it thus counts as not needed-in-image-p.
If on the other hand, an action has no output-files, then ASDF
considers that the operation is worth its side-effects in the current
image; it thus counts as needed-in-image-p.

What the new traverse-action action had to do (2.26.46),
was to associate to each visited node a status depending on whether
or not the action was needed in the current image. When visiting
an action in a context where the goal isn’t (known to be) needed
in image, or where the action is intrinsically not needed-in-
image-p because its value resides in filesystem side-effects, then
all the action’s dependencies would themselves be visited in a mode
where the goal isn’t (known to be) needed in image. In that mode,
the action is consulted for its timestamp, but won’t be included in
the plan as long as it’s up-to-date. However, if the action is found
to be out of date, before it would be planned, all its dependencies
are visited a second time, in a mode where the goal is known to be
needed in image. The top level action is initially requested with a
goal of being needed in image, which only applies of course if it’s
itself a needed-in-image-p action.42

The code was then refactored by introducing an explicit plan
object (2.26.47), to hold this action status information during the
planning phase, as distinguished from the execution phase during
which action status refers to what is actually done.

9.7 The Birth of ASDF 3
ASDF ended up being completely rewritten, several times over,
to correctly address these core issues. The unintended result of
these rewrites was to turn it into a much more robust and versatile
product than it was: not only does it cover the robust building
of CL software, it also includes runtime software management
functionality and integration both ways with the Unix command
line.

Considering the massive changes, I decided it should be called
ASDF 3, even though a few months ago, I was convinced I would
never write such a thing, since ASDF 2 was quite stable and I had no
interest in making big changes. ASDF 3 was pre-released as 2.27 in
February 2013, then officially released as 3.0.0 on May 15th 2013.

The numbering change itself triggered an interesting bug, be-
cause ASDF had adopted without documenting it the version com-
patibility check from Unix libraries, whereby an increase in the
major version number indicates incompatibility. ASDF 3 thus con-
sidered itself incompatible with its ASDF 2, including with its pre-
releases from 2.27 to 2.33. Since this compatibility check was un-
documented and no one relied on it, and since it didn’t make sense
for CL software distributed as source code the way it did for Unix
software distributed as object files, this led to a 3.0.1 release the
next day, replacing the compatibility check so that a higher major
version number still signifies compatibility.

Robert Goldman assumed maintainership in July 2013, a few
months after the release of ASDF 3.0.1, and has since released 3.0.2
and 3.0.3. I remained the main developer until release 3.1.2, in May
2014, that culminates a new series of significant improvement.

All known bugs have been fixed except for wishlist items, but
there will always be portability issues to fix. Also, while the re-

42 The principle of visiting the action graph multiple times is generalizable
to other situations, and the maximum number of visits of a given node is the
height of the semi-lattice of node states during the traversal. For instance, in
a Google build system extension I wrote to support CL, visited files would
be upgraded between being not needed in image, needed loaded as cfasl,
needed loaded from source, or needed loaded from fasl. The same technique
could be used to improve XCVB.

gression test suite has swollen, many functions remain untested,
and many of them probably include bugs. A big TODO file lists
suggested improvements but it’s uncertain whether a new active
developer will ever implement them.

9.8 Why Oh Why?
Some may ask: how did ASDF survive for over 11 years with such
an essential birth defect? Actually, the situation is much worse:
the very same bug was present in mk-defsystem, since 1990.
Worse, it looks like the bug might have been as old as the original
DEFSYSTEM from the 1970s.

The various proprietary variants of defsystem from Symbol-
ics, Franz, and LispWorks all include fixes to this issue. However,
the variants from Symbolics and Franz, require using a non-default
kind of dependency, :definitions, as opposed to the regularly
advertised :serial; also, the variant from Franz still has bugs in
corner cases. Meanwhile the variant from LispWorks also requires
the programmer to follow a non-trivial and under-documented dis-
cipline in defining build :rules, so you need to declare your de-
pendencies in two related rules :caused-by and :requires
that are akin to the original depends-on vs do-first in ASDF 1 (but
probably predate it). What is worse, the live knowledge about this
bug and its fix never seems to have made it out to the general Lisp
programming public, and so most of those who are using those
tools are probably doing it wrong, even when the tools allow them
to do things right. The problem isn’t solved unless the bug is
fixed by default.

This is all very embarrassing indeed: in the world of C program-
ming, make solved the issue of timestamp propagation, correctly,
since 1976. Though historical information is missing at this point, it
seems that the original DEFSYSTEM was inspired by this success.
Even in the Lisp world the recent faslpath and quick-build,
though they were much simpler than any defsystem variant, or
quite possibly because they were much simpler, got it right on the
first attempt. How come the bug was not found earlier? Why didn’t
most people notice? Why didn’t the few who noticed something
care enough to bother fixing it, and fixing it good?

We can offer multiple explanations to this fact. As a first ex-
planation, to put the bug back in perspective, an analogy in the C
world would be that sometimes when a .h file is modified in a
different library (and in some more elaborate cases, in the same
library, if it’s divided in multiple modules), the .c files that use
it are not getting recompiled. Put that way, you find that most C
builds actually have the same problem: many simple projects fail
to properly maintain dependency information between .c and .h
files, and even those that do don’t usually account for header files
in other libraries, unless they bother to use some automated de-
pendency analysis tools. Still, the situation is somewhat worse in
the CL world: first because every file serves the purpose of both
.c and .h so these dependencies are ubiquitous; second because
because CL software is much more amenable to modification, in-
deed, dynamic interactive modification, so these changes happen
more often; third because CL software libraries are indeed often
lacking in finish, since tinkering with the software is so easy that
users are often expected to do so rather than have all the corner
cases painfully taken care of by the original author. In C, the de-
velopment loop is so much longer, jumping from one library to the
next is so expensive, that building from clean is the normal thing to
do after having messed with dependencies, which often requires re-
configuring the software to use a special writable user copy instead
of the read-only system-provided copy. The price usually paid in
awkwardness of the development process in C is vastly larger than
the price paid to cope with this bug in CL. Users of languages like
Python or Java, where installation and modification of libraries is
more streamlined by various tools, do not have this problem. But

25 2017/5/13

then their programs don’t have any kind of macros, so they lose, a
lot, in expressiveness, as compared to CL, if admittedly not to C.

As a second explanation, most CL programmers write software
interactively in the small, where the build system isn’t a big factor.
This is both related to the expressive power of the language, that
can do more with less, and to the size of the community, which is
smaller. In the small, there are fewer files considered for build at
a time; only one file changes at a time, in one system, on one ma-
chine, by one person, and so the bug isn’t seen often; when a depen-
dency changes incompatibly, clients are modified before the system
is expected to work anyway. Those who have written large software
in the past tended to use proprietary implementations, that provided
a defsystem where this bug was fixed. ITA Software was one of
the few companies using ASDF to write really large software, and
indeed, it’s by managing the build there that we eventually cared
enough to fix ASDF. In the mean time, and because of all the issues
discussed above, the policy had long been to build from clean be-
fore running the tests that would qualify a change for checkin into
the code repository.

As third, and related, explanation, Lisp has historically encour-
aged an interactive style of development, where programs compile
very fast, while the programmer is available at the console. In the
event of a build failure, the programmer is there to diagnose the
issue, fix it, and interactively abort or continue the build, which
eliminates most cases of the bug due to an externally interrupted
build. Utter build failures and interruptions are obvious, and pro-
grammers quickly learn that a clean rebuild is the solution in case
of trouble. They don’t necessarily suspect that the bug is the build
system, rather than in their code or in the environment, especially
since the bug usually shows only in conjunction with such other
bug in their code or in the environment.

As a fourth explanation, indeed for the defsystem bug to
show without the conjunction of an obvious other bug, it takes
quite the non-colloquial use of "stateful" or "impure" macros, that
take input from the environment (such as the state of packages or
some special variables) into account in computing their output ex-
pansions. Then, a change in a dependency can lead in expecting a
change in the macro expansion, without the client site being mod-
ified, and that change will fail to take place due to the defsys-
tem bug. But most macros are "stateless", "pure", and have no such
side-effect. Then, a meaningful change in a macro defined in a de-
pendency usually requires a change in the client file that depends
on it, in which case the client will be recompiled after that change
and no bug will be seen. The one case that the programmer may no-
tice, then, is when the macro interface didn’t change, but a bug in
its implementation was fixed, and the clients were not recompiled.
But the programmer is usually too obsessed with his bug and fixing
it to pay close attention to a bug in the build system.

9.9 The Aftermath
At the end of this epic battle against a tiny old bug, ASDF was
found completely transformed: much more sophisticated, yet much
simpler. For instance, the commented traverse-action func-
tion is 43 lines long, which is still significantly less than the origi-
nal traverse function. Reading the ASDF 3 source code requires
much less figuring out what is going on, but much more understand-
ing the abstract concepts — at the same time, the abstract concepts
are also well documented, when they were previously implicit.

Interestingly, this new ASDF 3 can still meaningfully be said
to be "but" a debugged version of Dan Barlow’s original ASDF
1. Dan probably had no idea of all the sophistication required to
make his defsystem work correctly; if he had, he might have
been scared and not tried. Instead, he was daringly experimenting
many ideas; many of them didn’t pan out in the end, but most were

clear improvement on what preceded, and he had quite a knack for
finding interesting designs.

And the design of ASDF is undoubtly interesting. It masterfully
takes advantage of the multiple inheritance and multiple dispatch
capabilities of CLOS to deliver in a thousand lines or so a piece
of software that is extremely extensible, and unlike anything writ-
ten in languages missing these features. ASDF 3 is ten times this
thousand lines, because of all the infrastructure for robustness and
portability, because of all the burden of hot upgrade and backward
compatibility, because of all the builtin documentation and com-
ments, and because of all the extensions that it bundles. But the
core is still a thousand lines of code or so, and these extensions,
built on top of this core, illustrate its expressive power, as well as
provide essential services to CL programmers.

In the end, we find that software designs are discovered, not
created ex nihilo. Dan extracted a raw design from the mud of
conceptual chaos, and gave birth to ASDF. Tasked with maintaining
the software, I refined the design, removing the mud, until what
was left was a polished tool. I certainly won’t claim that my task
was harder or more worthwhile than his, or that ASDF 3 is a jewel
among build systems. But I believe that it has a clean and original
design worth explaining, yet that neither Dan Barlow nor I can
honestly be said to have designed this design; we merely stumbled
upon it.

Bibliography
Henry Baker. Critique of DIN Kernel Lisp Definition Version 1.2. 1992.

http://www.pipeline.com/~hbaker1/CritLisp.html
Daniel Barlow. ASDF Manual. 2004. http://common-lisp.net/

project/asdf/
Zach Beane. Quicklisp. 2011. http://quicklisp.org/
Alastair Bridgewater. Quick-build (private communication). 2012.
François-René Rideau and Spencer Brody. XCVB: an eXtensible Com-

ponent Verifier and Builder for Common Lisp. 2009. http://
common-lisp.net/projects/xcvb/

Peter von Etter. faslpath. 2009. https://code.google.com/p/
faslpath/

François-René Rideau and Robert Goldman. Evolving ASDF: More Co-
operation, Less Coordination. 2010. http://common-lisp.net/
project/asdf/doc/ilc2010draft.pdf

Mark Kantrowitz. Defsystem: A Portable Make Facility for Com-
mon Lisp. 1990. ftp://ftp.cs.rochester.edu/pub/
archives/lisp-standards/defsystem/pd-code/
mkant/defsystem.ps.gz

Dan Weinreb and David Moon. Lisp Machine Manual. 1981.
https://bitsavers.trailing-edge.com/pdf/mit/
cadr/chinual_4thEd_Jul81.pdf

Kent Pitman. The Description of Large Systems. 1984. http://www.
nhplace.com/kent/Papers/Large-Systems.html

François-René Rideau. Software Irresponsibility. 2009. http://fare.
livejournal.com/149264.html

Richard Elliot Robbins. BUILD: A Tool for Maintaining Consistency in
Modular Systems. 1985. ftp://publications.ai.mit.edu/
ai-publications/pdf/AITR-874.pdf

26 2017/5/13

http://www.pipeline.com/~hbaker1/CritLisp.html
http://common-lisp.net/project/asdf/
http://common-lisp.net/project/asdf/
http://quicklisp.org/
http://common-lisp.net/projects/xcvb/
http://common-lisp.net/projects/xcvb/
https://code.google.com/p/faslpath/
https://code.google.com/p/faslpath/
http://common-lisp.net/project/asdf/doc/ilc2010draft.pdf
http://common-lisp.net/project/asdf/doc/ilc2010draft.pdf
ftp://ftp.cs.rochester.edu/pub/archives/lisp-standards/defsystem/pd-code/mkant/defsystem.ps.gz
ftp://ftp.cs.rochester.edu/pub/archives/lisp-standards/defsystem/pd-code/mkant/defsystem.ps.gz
ftp://ftp.cs.rochester.edu/pub/archives/lisp-standards/defsystem/pd-code/mkant/defsystem.ps.gz
https://bitsavers.trailing-edge.com/pdf/mit/cadr/chinual_4thEd_Jul81.pdf
https://bitsavers.trailing-edge.com/pdf/mit/cadr/chinual_4thEd_Jul81.pdf
http://www.nhplace.com/kent/Papers/Large-Systems.html
http://www.nhplace.com/kent/Papers/Large-Systems.html
http://fare.livejournal.com/149264.html
http://fare.livejournal.com/149264.html
ftp://publications.ai.mit.edu/ai-publications/pdf/AITR-874.pdf
ftp://publications.ai.mit.edu/ai-publications/pdf/AITR-874.pdf

	Introduction
	1 What ASDF is
	1.1 ASDF: Basic Concepts
	1.1.1 Components
	1.1.2 Example System Definitions
	1.1.3 Action Graph
	1.1.4 In-image

	1.2 Comparison to C programming practice

	2 ASDF 3: A Mature Build
	2.1 A Consistent, Extensible Model
	2.2 Bundle Operations
	2.3 Understandable Internals
	2.4 Package Upgrade
	2.5 Portability Layer
	2.6 run-program
	2.7 Configuration Management
	2.8 Standalone Executables
	2.9 cl-launch
	2.10 package-inferred-system
	2.11 Restoring Backward Compatibility

	3 Code Evolution in a Conservative Community
	3.1 Feature Creep? No, Mission Creep
	3.2 Backward Compatibility is Social, not Technical
	3.3 Weak Synchronization Requires Incremental Fixes
	3.4 Underspecification Creates Portability Landmines
	3.5 Safety before Ubiquity
	3.6 Final Lesson: Explain it

	Appendices
	4 Appendix A: ASDF 1, a defsystem for CL
	4.1 A brief history of ASDF
	4.2 DEFSYSTEM before ASDF
	4.3 ASDF 1: A Successful Experiment
	4.4 Limitations of ASDF 1

	5 Appendix B: ASDF 2, or Productizing ASDF
	5.1 Upgradability
	5.2 Portability
	5.3 Configurability
	5.4 Robustness
	5.5 Performance
	5.6 Usability

	6 Appendix C: Pathnames
	6.1 Abstracting over Pathnames
	6.2 Pathname Structure
	6.3 Namestrings
	6.4 Trailing Slash
	6.5 Merging Pathnames
	6.6 nil as a Pathname
	6.7 Logical Pathnames
	6.8 Portability Done Right

	7 Appendix D: ASDF 2.26, more declarative
	7.1 defsystem Dependencies
	7.2 Selective System Forcing
	7.3 Encoding Support
	7.4 Hooks around Compilation
	7.5 Enforcing User-Defined Invariants

	8 Appendix E: Failed Attempts at Improvement
	8.1 Failed Experiments
	8.2 Partial Solutions
	8.3 Attempted Namespace Grabs
	8.4 Not Successful Yet
	8.5 Ubiquity or Bust!
	8.6 Interface Rigidity
	8.7 Cognitive Load Matters
	8.8 Verbosity Smells Bad
	8.9 Underspecified Features
	8.10 Problems with CL itself

	9 Appendix F: A traverse across the build
	9.1 The End of ASDF 2
	9.2 The traverse Algorithm
	9.3 Force Propagation
	9.4 Timestamp Propagation
	9.5 Prepare Operation
	9.6 Needed In Image
	9.7 The Birth of ASDF 3
	9.8 Why Oh Why?
	9.9 The Aftermath

	Bibliography

