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Abstract We present a conceptual path we followed striving towards
defining a computational and logical architecture integrating internal
reflection. We start from a fundamental limitation theorem about Turing-
equivalent systems, and justify partial non-deterministic functions as a
natural framework to reach our goal. We then introduce non-determinism
first in the applicative λ-calculus, and consider the semantic implications
of introducing it with evaluation strategies other than call-by-value; we
see how sharing of reductions in presence of non-determinism implies
that normal evaluation must be modeled by call-by-future rather than
by call-by-name. We then study the integration of a reflection primitive
in the obtained non-deterministic λ-calculus, and try to determine how
it effects the expressive power of the system; we see this could be a model
of Curry’s illative combinatory logic. Finally, we propose directions to
extend the above theory of reflection so to actually encompass useful
real-life computational systems, which naturally leads to reflection in
distributed calculi.

1 Introduction

In a previous paper [27], we have motivated from a cybernetical point of view the
utility of a reflective platform to manage the complexity of long-lived and widely-
used programs. When the developed programs have such additional constraints
of quality of service as have telecommunication networks, to deliver permanent
uninterrupted real-time evolving adaptable services, it is required that the re-
flective capabilities be fully deployable dynamically at runtime (since any time
is runtime), as a “normal” first-class feature. That is, reflection must be internal
to the calculus modeling those services.

In this paper, we explore basic elements of theory required to achieve the goal
of defining a formal computational architecture that provide for full reflection,
that is, arbitrary internal manipulation of programs themselves by metapro-
grams. So as to extract the essence of the problem at stake, we study how to
integrate this reflection in the simplest known foundational formalisms for com-
putation, recursion theory and λ-calculi. Along the trail of our exploration, we
stumble on a few undeservedly ignored but elementary theorems that result im-
mediately from formalizing of our approach; however, for the sake of conciseness,
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we only give the key ideas behind the proofs, from which they could be easily
formalized using well-known techniques from relevant domains of theoretical
computer science, to which we refer1.

In a first part (2), we start with a limitation theorem regarding the con-
sistent formalization of internal reflection in computational systems, in forms
that enable full dynamic manipulation of code, and are led to the study non-
determinism in computational systems. Since we weren’t able to find a satisfying
formal framework for non-deterministic computational systems in available lit-
erature, we introduce, in a second part (3), non-determinism in λ-calculi, and
study its impact on various well-known properties of their semantics, focusing on
evaluation strategies. We may then, in a third part (4), add a reflection primitive
to a non-deterministic computational system; we see that it actually achieves our
initial goal beyond expectations, by providing with internal logical reasoning on
programs as well as with mere internal metaprogramming control. Finally (5), we
discuss the expressive power of a reflective platform, and how taking advantage
of it requires extending the system with external interaction within a concurrent
computation framework, which poses some interesting problems.

2 From Reflection to Non-Determinism

2.1 A Fundamental Limitation

The first result we have in studying the semantics of reflection is the impossibility
of a “perfect” internal reification function that would map functions each to a
valid source code for it.

Theorem 1 Given a data structure D (recursively enumerable set with com-
putable equality test), and a Turing-equivalent computational domain C (set
given by Σ1-definable “semantics” over some “source language” data structure,
and able to express all partial recursive functions) there is no computable injec-
tive total mapping R from C to D.

Proof Sketch for Theorem 1 With such a mapping, we could easily compare
partial recursive functions for equality, by checking that they have the same
image by R. This would solve the Turing halting problem, which we know has
no computable solution.

1 We are convinced that readers familiar with the domain will have no problem with
the semi-formal arguments proposed. If a reader has serious doubts about the validity
or the relevance of any given argument, we will gladly welcome criticism and try to
answer as best as we can; hesitating readers are invited to consult the bibliography.

Actually, we think that complete formalizations are to be done in a computerized
proof system, not in an article written for human beings, that must remain concise
within its space limits. We apologize for lack of having actually implemented our
proofs in a computerized formal reasoning system before we publish.
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We cannot say who first discovered this theorem; actually, we’ve never seen
it written2, though it looks like common implicit lore among people studying
Reflection. Most likely, every person newly interested in Reflection quickly re-
discovers it, but doesn’t dare write it down, since the underlying proof is such a
trivial elaboration on Turing’s Fundamental Theorem [33], yet its correct formal-
ization takes quite a lot of hassle. Indeed, this theorem is actually a metatheorem
on computational domains; it relies on our being in some formal metasystem in
which are already formalized notions of formal systems and of computability,
that will be external to those formal systems the theorem talks about.

The crucial point in the theorem is that we require the image of every abstract
program in C to be uniquely defined by a computable metaprogram. However,
the notion of “abstract program” is not a computable notion; in other words, C is
not a “computable structure”, but results from taking the quotient of source pro-
grams with respect to some non-computable notion of observational equivalence;
it can be defined in usual first-order logic presentations [7] with a ∀∃-quantified
predicate, but not with a computable (∃-quantified) predicate. A computable
metaprogram must thus be defined as a computation over program sources, not
one directly over abstract programs; it may be considered as correctly defining a
mapping over abstract programs if and only if it is compatible with the semantic
equivalence, that is, if and only if two program sources representing the “same”
abstract program have the “same” image.

2.2 Bypassing the Limitation

There have been many approaches to cope with this limitation. They all in-
volve dropping at least one hypothesis from the limitation theorem. Since we’re
interested in achieving Reflection in a powerful language, we’ll ignore those ap-
proaches that drop C being Turing-equivalent, D being a data structure, or R

being total and injective.
One way, used by type theorists [4] or daring application programmers [23]

is to manipulate only abstract objects, have leave reification be an oracle ex-
ternal to the calculus, yielding representations whose interpretation “magically”
coincides with desired abstract objects. This does not actually achieve internal
reification, that be usable dynamically within the calculus, but only some kind
of static metaprogramming from an external metasystem, and pushes back the
problem of having satisfying internal reification in the considered system+meta-
system combination. The fact that the metaprogramming be static means that
the coincidence between object and representation is fragile, since its consistency
is not dynamically enforced by the system.

Another way, used by recursion theorists [31] or system implementors [29], is
to manipulate only representations as first-class objects, and leave their interpre-
tation into abstract programs be external to the actual calculus. The calculus is

2 We are very conscious of the incomplete character of our bibliography, and will
gratefully welcome pointers to earlier works (and further works as well). We will
more generally welcome any kind of constructive criticism.
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thus an “explicit calculus” of low-level representations rather than an “abstract
algebra” where you could actually manipulate high-level objects This breaks
“referential transparency” in the programming language, since two objects that
should have the “same” meaning according to the intended declared semantics,
will actually behave in quite distinct ways. Actual computing systems following
this path have their guts revealed, and users are forced to manually manage
low-level representation details and constantly adapt them for use-dependent
performance or adequation, instead of focusing on high-level abstract concepts
independently from the underlying representation. Reflective features developed
on top of such systems tend to lock the representation and induce bloat, limit
adaptability, and make formal reasoning overly complex.

These two ways avoid the problem without solving it, by privileging either
the concrete or the abstract aspect of objects in the calculus, and resorting to
external magic so as to relate the two aspects. The complexity is thus shifted
towards an outside metacomputational or metalogical system, in which the same
problem in turn happens, which makes metareasoning exponentially more com-
plex as metalevels are explored, while increasing development cost and system
fragility by requiring manually-managed redundancy between metalevels.

Since we want internal reification, we need to remove a different hypothesis
than chosen above from the impossibility theorem. The only one that seems to
remain is that R be a deterministic function; indeed, since associating a behavior
to a source program (the semantics) is intrinsically non-injective (many-to-one),
then the inverse operation (the reification) is intrinsically non-deterministic (one-
to-many). Thus, we can achieve our goals if we use a framework in which non-
deterministic functions are first-class.

2.3 Non-Deterministic Partial Functions

While partial functions are of common use in recursion theory [7,31], and have
been cleanly expressed in formal systems [11], non-deterministic functions as
such have been mostly ignored, to the point that the word “function” is generally
understood only for deterministic functions.

Functions that are not forcibly total will be said to be partial, and functions
that are not forcibly deterministic will be said to be non-deterministic. Herein,
when we say “function”, we’ll mean “partial non-deterministic function”. In our
non-deterministic framework, traditional “functions” are called “deterministic
functions”; traditional “mappings” are called “total deterministic functions”.

An interesting approach is then to reuse and extend the classical paradigm of
functions-as-relations, where functions are identified to binary relations of same
graph. Actually, since we accept non-determinism and partiality in functions, we
now have an exact isomorphism between functions and relations, whereas this
was not the case when only deterministic functions were accepted:

Given a binary relation R from E to F ,
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R is deterministic if and only if ∀x ∈ E ∀y ∈ F ∀z ∈ F xRy ∧ xRz =⇒ y = z

R is total if and only if ∀x∈E ∃y∈F xRy

R is injective if and only if ∀x∈E ∀y∈E ∀z∈F xRz ∧ yRz =⇒ x = y

R is surjective if and only if ∀y∈F ∃x∈E xRy

R is bijective if and only if if it is deterministic total injective and surjective.
Moreover, the inverse of R is the binary relation R−1 from F to E such that

∀x∈E ∀y∈F yR−1x ⇔ xRy

Taking the inverse of a binary relation is an involutive operation, and that
a binary relation is deterministic if and only if its inverse is injective, while it is
total if and only if its inverse is surjective.

We then identify a partial non-deterministic function with a binary relation
of same graph: the graph ΓT of a function or binary relation T is defined3 such
that:

ΓT = {〈x, y〉 ∈ X×Y | T : x 7→ y}

That is, a function φ is identified to the relation
φ
7→ that relates its inputs to

their respective outputs (if any), and a binary relation R is identified to the
function that maps elements of the first set to those of the second set to which
it is related. In other words, a function φ and a relation R are identified if and
only if

∀x ∀y y =(φ x) ⇔ xRy.

Only, the scripture y = (φ x) above is misleading at best in a non-determi-
nistic context, since the expression (φ x) (application of function φ to argument
x) may take several values, unless φ is deterministic; thus we have to refine the
concept of equality.

2.4 Logical Semantics of partial non-deterministic functions

Hence, we’ll write y✁(φ x) the fact that the evaluation of expression (φ x)

may yield value y (which again holds if and only if φ : x 7→ y). More generally,
we’ll write a ✁ b the fact that the evaluation of expression b may yield any
value that the evaluation of expression a may yield. We’ll reserve symbol = for
equality of expressions, so that a = b holds if and only if expressions a and
b can both yield the exact same values (any value resulting from evaluating a

may result from evaluating b, and conversely). ✁ is a reflexive transitive binary
metarelation between expressions; we can make it antisymmetric by adding an
axiom of “extensionality” or otherwise defining = such that a = b be equivalent
to (a✁ b) ∧ (b✁ a).

The interpretation of (φ x) when φ is a general partial non-deterministic
function, as defined by its graph Γφ, is thus that of being an expression that
can yield any single result y such that the pair 〈x, y〉 is in the graph Γφ of φ, or
else that won’t return any result. Given a non-deterministic version of Hilbert’s

3 Actually, which of graphs, sets, functions, relations, or total mappings are “more
primitive”, and which are defined from the others, depends on the formalism in use,
and is of little importance as long as the properties that interrelate them hold.
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choice quantifier ε (which is to ∃ what λ is to ∀), this can be formalized in the
following way:

φ(x) = εy . 〈x, y〉 ∈ Γφ

This formula is well-known in many formal logic systems, except that in the
present framework, the non-determinism (as well as partiality) associated to
this formula is internal to the logic, not external to it. This difference means
that a model of the calculus needs not (and must not) statically choose a one
value for every ε-witness, but instead must maintain an account of all dynamic
values possible for the expression; this subtle difference is what will later allow
reflection to happen, by not requiring consistency between static choices, but
only dynamic consistency.

The obvious semantics to consider for non-deterministic expressions, that
seamlessly generalizes the semantics already considered for expressions with par-
tial functions, is (denotational) ”may” semantics. That is, the meaning of an
expression is the set of possible outcomes of its evaluation, the set of the values
that evaluation may yield after possible termination. The meaning of complex
expressions can be inductively defined from their structure as terms, with the set
of possible values of a term being synthesized from the set of possible values of its
subterms. This is also compatible with extending to non-deterministic functions
the well-known elimination of functional constructors in favor of their associated
relation, as used in classical first-order logic, and in some logic programming lan-
guages as well. Hence, an assertion (P (f x) (g y)) will be translated into

∃z ∃t (P z t)∧(Rf x z)∧(Rg y t)

An interesting property of this transformation is that after replacing non-deter-
ministic functional constructors with relations, the first-order logical substratum
is the same in the non-deterministic case as in the well-known deterministic case!
Hence, we can reuse all known theorems of first-order logic that apply to logical
structures with a purely relational presentation.

In particular, we may define computability for partial non-deterministic func-
tions in pretty much the same way as for traditional partial functions: in the
framework of recursive functions, a partial non-deterministic function is com-
putable if and only if its graph can be defined from primitive relations, construc-
tors, and variables by a formula whose only possible quantifiers are outermost
existential quantifier. We immediately see that, assuming the graph of the primi-
tive constructors are recursively enumerable in the traditional meaning, a partial
non-deterministic function is computable if and only if its graph is a recursively
enumerable set in the traditional meaning. As the reference for computability,
we may choose a standard presentation of the set N of natural integers, with
usual axioms, and a non-determinism generator flip that takes no argument
and returns either 0 or 1, and can be eliminated into the unary relation Rflip

that holds for 0 and for 1 but for no other integer. Computability of functions
from a data structure to another data structure in general may either be defined
directly from primitive operations as above, or more conveniently perhaps, from
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the above case, through otherwise axiomatically computable encodings of the
domain and codomain sets of these functions with natural integers.

An easy result is that, by a simple symmetry of the graphs, every computable
(partial non-deterministic) function has a computable (partial non-determinis-
tic) inverse; this of course says nothing about the complexity of the inverse
function, since the method used in the above proof consists in using a recursive
enumeration or the graph, which in general is a particularly bad algorithm. Such
a result suggests that while a logic axiomatization of computability is useful, it
(voluntarily) lacks discrimination power, and for finer results, we need study a
computational system in more details, with its operational semantics.

3 From Non-Determinism to λ-Calculus

3.1 Non-Determinism in Applicative λ-Calculus

A simple intrinsic way to formalize classical deterministic functions in a way
directly compatible with first-order logical presentations is with applicative λ-
calculus: it provides a skeletal Turing-equivalent computational system where
the semantics of expression matches that of first-order logic. We may thus hope
that it will be as easy to extend it with non-determinism as was the case for
logical systems, so that, having a formal computational system in which to ex-
press partial non-deterministic functions, we may build a minimalistic internal
reflection upon it.

The λ-calculus [9,10] is defined as usual by the grammar:

B ::= a | b | c | ... (basic constants)
V ::= x | y | z | ... (variables)
M ::= B | V | λV.M | M M | ... (lambda terms)

We unhappily lack space to recall the theory of λ-calculus in this paper, so that
we refer the reader to standard texts on the topic [2,?]; good such texts are
available on the web [?].

Recursion, numbers, pairing, booleans, can all be expressed in most λ-calculi
(applicative or not) either intrinsically (with the “paradoxical” fix-point combi-
nator Y , Church numerals, and generally selector-constructing λ-terms [?]), or
extrinsically (from a set of basic constants). With the restriction by a Church-like
simple type system with proper axioms, the exact setting of recursive function
theory can be retrieved.

In the applicative λ-calculus, the evaluation is done in applicative order (call-
by-value), that is, functions and arguments must be “fully” evaluated before a
function call happens. As said above, the semantics of applicative evaluation
express exactly the semantics of functions in usual (partial) recursive function
theory [7], or in usual programming languages [18].

Not surprisingly, we must rely on a distinction between expressions and values
to formalize the semantics; only, since we don’t have an a-priori extrinsic model
for the calculus, we must define values in an intrinsic way. Values are defined from
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normal forms, or rather, observable forms, as the quotient structure of observable
forms considered up to observational equivalence. The denotational semantics of
an expression is the set of values it may take. The notion of observable form is
computable (provided all added reduction rules are computable), but the notion
of value isn’t, since it is not usually decidable whether two observable forms are
semantically “equal”.

Non-determinism will appear simply with the addition of non-determinis-
tic operators (syntactic constructors for terms in the M grammar, with their
associated evaluation rules), though we’ll see that we could do it with special
constants (nullary syntactic constructors for terms in the B grammar, with their
associated δ-rules [9]). By definition, however, non-determinism amounts to add
rewrite rules that break the sacrosankt confluence of the calculus, which is why
it is deliberately avoided by theorists.

The simplest non-deterministic operator to be introduced in λ-calculus was
John McCarthy’s ambiguity special form amb [21], also known as either in
Screamer [30], whose semantics is that (amb M N) (for which we’ll also use the
infix syntax M ∪N) would be rewritten in either M or N when evaluated. This
operator suffices to introduce all recursive partial non-deterministic functions,
as we’ll prove in Theorem 2 below, which we’ll latter see is not such great a feat
(non-deterministic version of the Turing tar-pit [26]).

For convenience, we’ll also introduce a special form ⊥ whose evaluation rule
is to always diverge. This form is mostly for syntactic convenience, since macro-
expressible [12] in traditional λ-calculi as (λx.x x)(λx.x x). Actually, we could
avoid special forms, and achieve the same expressive power with only basic con-
stants and their δ-rules, by doing all the dirty job under the protection of λ’s:
hence, instead of ∪, we’d have a function ∪̂ such that ∪̂ f g = λx.(f x) ∪ (g x);

instead of ⊥, we’d have a function ⊥̂ such that ⊥̂ = λ .⊥; etc. However, we will
use special forms instead of basic constants for the sake of readability.

Theorem 2 Any computable partial non-deterministic function f from a data-
structure to another data-structure can be expressed in the applicative λ-calculus
extended with the ambiguity operator (assuming some convention to express nat-
ural numbers, pairing, and those data-structures within the calculus).

Proof Sketch for Theorem 2 By definition of computability, the graph Γf

of a partial non-deterministic function f is recursively enumerable set by a de-
terministic index function φ: Γf = {(φ i)}+∞

i=0 . We can thus define f with the
following recursive definitions:

(define (try x i)

(if (equal? (car (φ i)) x)

(cdr (φ i))

⊥))
(define (enum x i)

(amb (try x i) (enum x (1+ i))))

(define (f x)

(enum x 0))
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3.2 Generalizing Normal Order Evaluation in Presence of

Non-Determinism

The semantics of vanilla λ-calculus [2], is such that reductions happen in any
order, and the confluence of the calculus ensures that the result (successful con-
vergence toward a irreducible form, or divergence) does not depend on that order.
A valid and complete evaluation strategy for λ-calculus in this deterministic case
is normal order evaluation (call-by-name or call-by-need), whereby textual sub-
stitution of formal parameters with given arguments happens at function call
sites systematically before any reduction within the arguments, reductions mat-
ter (and happen) only when needed. In contrast, applicative order evaluation
(call-by-value) appears in this setting as a valid but incomplete strategy, since it
fails to converge to a normal form when evaluating such terms such as (λ .⊤)⊥
(where ⊤ is a converging term) by exploring unneeded diverging sub-terms.

Now, non-determinism precisely breaks the confluence of the calculus, so
that generalizing traditional λ-calculus to a non-deterministic setting requires
particular attention to issues such as order of evaluation, whereas, the seman-
tics of applicative λ-calculus constrains evaluation order enough so as to have
clearly defined, easily understood semantics in presence of non-determinism. If
the semantics doesn’t impose any constraint on β-reductions, then call-by-name
will still model it completely, and will still generate strictly more convergent
evaluations than call-by-value. However, such semantics is not quite satisfactory
[6], and doesn’t extend the call-by-value semantics to more terms, but modi-
fies it in not-so-subtle ways, since some terms have strictly more, undesirable,
values, under the former “evaluation strategy” than under the latter: indeed,
consider a data-structure (intrinsic or extrinsic, for instance the set N of nat-
ural integers) with equality test equal?, and an ambiguous expression E with
many possible results, all within the data-structure (for instance, an E such that
E = 0∪(1+ E)); then the form ((λ x.(equal? x x)) E) will always succeed
and yield a truth value under call-by-value, whereas it may report either truth
or false under call-by-name.

The failure of call-by-name to provide satisfactory semantics comes from its
being unable to model the sharing of reductions between multiple occurrences
of a “same” variable. In contrast, call-by-value provides sharing by forcing all
reductions in a term to happen before any duplication, by fully evaluating ar-
guments of function applications; it is not a subtle way to share reductions,
and it requires that “early decisions” be taken in the choice of ambiguous re-
duction during the evaluation process; still it provides with a limited notion of
“identity” of variables. If we want to correctly generalize normal order evalua-
tion from deterministic settings to the non-deterministic settings, in a way that
still extends applicative order evaluation in these new settings, it is necessary
to discard call-by-name and replace it with call-by-future [1,13]. Futures are
a mechanism to mandate sharing of reductions among multiple instances of a
replicated argument, without imposing an order on those reductions. The fact
that arguments are shared rather than copied means that substitution must no
more be considered as textual, replacing variables each by an expression tree,
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but as “structural”, replacing variables each by the shared node of an expression
graph. This brings another evidence, if was needed anymore, that the λ-calculus
is intrinsically a calculus on graphs [?], not a calculus on trees. The fact call-by-
future produces more values than call-by-value is obvious, since any reduction
path for a term under the latter is valid under the former (much like with call-by-
name); the fact that call-by-future produces no more values than call-by-value
for terms where the latter converges (criterion where call-by-name failed) follows
from a double inductive reasoning on the structure of terms and the sequence
of reductions, with every reduction in call-by-future being valid in call-by-value
assuming previous reductions forced by call-by-value could converge (by hypo-
thesis of induction).

It is known that in a deterministic setting, we can macro-express call-by-name
λ-calculus within the applicative call-by-value λ-calculus (conserving function
application) through λ-thunkification [24,16], technique also known as “protect-
ing by a λ”: λ .M (where is a variable name that does not appear free in M)
delays the evaluation of M and partially “reifies” the term M , allowing it to
be passed as “text”; evaluation of delayed text may be forced when needed, by
applying the λ-thunk as a function to a dummy argument. The same transfor-
mation works in non-deterministic settings as well as deterministic settings, with
call-by-name being thus emulated with call-by-value; however, we’d be more in-
terested in emulating not call-by-name but rather call-by-future, since the latter
is the Right ThingTM . This is not possible with λ-thunkification (that emulates
call-by-name), however, this is possible if a new syntactic construct is added for
first-class “thunks” such as the (delay ...) or the (future ...) constructs
of some LISP systems [18], that ensure sharing of the “future result”, and may
have to be explicitly force’d or touch’ed to extract that value, when needed.
Such a construct appears quite naturally when factoring the transformation of
normal λ-calculus into applicative λ-calculus [16]. Actually, addition of “forc-
ing” primitive is also required to emulate call-by-value in call-by-future, for no
application-preserving transformation may change the fact that applicative se-
mantics prevent sharing of any information that be not fully reduced, whereas
normal semantics prevent forcing of reductions that are not needed in the final
result (again, a formal proof of these assertions would involve induction on the
structure of terms and of reductions).

Remarkably, its semantic nuisances do not prevent call-by-name non-determi-
nistic λ-calculus to express every individual recursive partial non-deterministic
function from N to N (or similarly, from any usual data-structure to any other
one) by pretty much the same trick as exposed above for call-by-value. What
it cannot correctly express is their dynamic composition as first-class objects in
way that conserves composition of higher-order functions, which again suggests
that the set of implementable functions is poor way to judge expressive power
of a language [12,27].
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3.3 Combining call-by-value and call-by-future

In the same papers as above [24,16], it is shown how a transformation in CPS
allows call-by-value to be simulated by either call-by-name or call-by-value itself
in the deterministic case. Though we haven’t fully studied yet what the prop-
erties of the transformation become in presence of non-determinism, it looks
like that they are mostly conserved, as far as denotational may semantics is
respected. In particular, the transformation indeed allows simulation of call-by-
future (not call-by-name) by call-by-value. Non-determinism is transformed so
that alternatives be spawned in advance as a choice between continuations, for
every case of reduction that may later be found in a shared delayed expression.
This means that a big tree of all possibilities of reductions will be built, which
induces a blow-up in the size of the CPS term, unless an oracle can decide early
enough what successful path will later be taken so as to always keep only the
right alternative.

Now call-by-value and call-by-future typically involve different point of views
on operational resolution of choices: it is expected that under call-by-value, a
choice will be made “immediately”, whereas under call-by-future, it will be made
“no sooner than needed”, and meanwhile some “fairness” will be provided among
possibilities. This doesn’t show in denotational may semantics, but does show
in the operational semantics; that is, if some kind of communication makes it
possible to observe computation in progress, they lead to completely different
processes, with different implications on the way the choice tree is pruned. Thus,
the fact that neither can directly express the other, but that CPS can simulate
both of them at the same time suggests that we should be considering a calculus
that has both of them, for instance, the call-by-value calculus with thunks of
[16]. We’ll call λND such a calculus.

In such a language, it becomes possible to express one-shot communication
and unification between parallel parts of the source expression tree, by creating
a shared object (using call-by-future), and later “forcing” its value (using call-
by-value) by failing execution (in effect hanging/killing the continuation) if the
object fails to have the expected value. Fairness ensures that the case in which
the value is propagated will be considered, whereas non-termination in the other
cases ensures that other cases will not be observable. For instance, assuming
(any) is a form that can return any value, at least among a rich enough domain
(we’ll later axiomatize ⊤ as such a form), and (assert bool) is a form macro-
equivalent to (if bool ⊤ ⊥), then the following statement will create a value
x, and later ensure that it is equal to 42:

(let ((x (future (any))))

(... (assert (equal? x 42)) ...))

This gives one-shot communication, or delocalized initialization of bindings, but
doesn’t allow side-effect, since the communicated value cannot change (however,
in another continuation rooted upward in the tree of choices, the binding may
have a different value; an assertion only forces its “own” future). Multiple at-
tempts at “setting it” (in a same time-line) will result in unification of values:
either the attempts match, and evaluation continues, or attempts do not match,
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and evaluation fails. The matching can very well be partial, with a binding be-
ing constrained with partial information, so that it may be later possible to
constrain it further. For instance, in the following expression, assuming cons is
any any-valued injective binary function, then the assert statement will match
x with a non-empty list, and bind y to its car, and then invoke function FOO

under these constraints:

(letrec ((list (λ . (either (cons (any) (list)) nil)))

(x (future (list)))

(y (future (any)))

(FOO x (assert (equal? x (cons y (list))))))

Multiple cases may be handled as follows, with (seq x y) being a form macro-
equivalent to ((λ . (y)) x):

(amb (seq (assert (equal? x nil)) case if nil...)

(seq (assert (equal? x (cons y (list)))) case if cons...))

All in all, the resulting language, considered with its may semantics, looks as
much like a logic programming language as it looks like a functional program-
ming language. This shouldn’t be such a surprise, since we basically identified
partial non-deterministic functions with arbitrary relations, and such relations
are precisely what logic programming language manipulate. And indeed, the
programming language that matches most the model of this non-deterministic
λ-calculus is the pure logic programming language Mercury [32], in which our
call-by-future corresponds to the normal mode of non-determinism (implemented
through backtracking), whereas call-by-value corresponds to committed-choice
non-determinism.

However, the operational semantics of Mercury and other logic program-
ming languages induce a gap between their actual semantics and this abstract
model: logic programming languages rely on some criterion of finite-time fail-
ure to prune the decision tree through backtracking, whereas λND explores all
subexpressions and their decision branches in parallel (only branches that can
provably not succeed may be pruned). Since it cannot be decided in general
which branches will fail, the precise criterion of finite-time failure used in logic-
programming languages is always an incomplete approximation, that the lan-
guage implementor forces upon users; on the other hand, implementation of the
full parallel-evaluating semantics, while possible (by recursive enumerability of
valid terminating computation processes), may be arbitrarily costly.

The may semantics does not discriminate between an object whose opera-
tional semantics is such that its evaluation must terminate from an object that
may operationally diverge, but, when its evaluation terminates, may take the
same value as the first one. This is purposeful, since non-termination is not a
computable concept, and hence cannot be observed. The calculus may be en-
riched with a notion of an observable finite-time failure [?], that may be useful
to define efficiently implementable operational semantics (at the cost of making
reasoning about programs a bit more complex); but as long as the language is
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powerful enough, there will always unobservable failures where a program runs
indefinitely.

4 From λ-Calculus to Reflection

4.1 Adding a Reification Primitive

Now that we have a bit of understanding of what simple non-deterministic com-
putation systems are like, and what their may semantics allow to express, we
may consider having an internal reification function R into one of them, that
would map values into an internal data structure.

First off, we can easily check that a reification function R cannot be “ex-
pressed in terms of ∪”, that is, isn’t macro-expressible in the λND calculus, since
it wouldn’t be able to correctly differentiate ⊥̂ from other λ-abstractions: by
induction on the contexts around terms to be reified, any value towards which
(R ⊥̂) may converge will be a value towards which any λ-abstraction may con-
verges. On the other side, ∪may be macro-expressed in terms of R, (more exactly,
∪̂ may be directly expressed), since (R x) will have to choose among the mul-
tiple (possibly infinitely many) valid representations for given object x, as soon
as there is a value with multiple possible sources. Reification thus requires that
we add a new primitive.

The addition of a reification function R to the calculus leads to a question:
what happens when the value to be reified was itself defined using R? An easy
answer would that R be a partial function that may well fail to return a result
on such terms, and that we already did enough of going around the limitation
theorem. But this answer is not satisfactory, as this solution is basically the
one we rejected earlier, of having a two-level architecture, where reification is
external to the actually reifiable domain. The correct answer is that R being
a primitive, the source representation ranged by R may itself contain reified
calls to R. Actually, adding any primitive to the calculus implies that a suitable
representation for this primitive be reserved in the data structure (most likely a
simulated abstract syntax tree) in which the values are represented.

Now, the big problem is that the set of functions that have same may seman-
tics as a given function is not recursively enumerable: its definition requires a
∀∃-quantified formula instead of a computable ∃-quantified formula. Hence, it is
impossible to implement a system where the semantics are completely respected.
But this limitation is not actually as bad as it sounds; it may even be a source
of creativity.

One way out is to consider the abstract high-level system as a specification,
and only mandate correctness with respect to it from the implementation, with-
out requiring fairness among possible outcomes (which would be an unobservable
feature of the calculus, anyway). The implemented calculus is thus lower-level
than specified, and the reification function discriminates more than should. This
is apparently not much better than the “explicit calculus” way around the initial
limitation. However, it is crucial that we be able to properly declare the abstract
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semantics that we care about independently from the peculiarities a particular
implementation: in this way, we can isolate as such static limitations of imple-
mentations, and enable the human operator to dynamically modify and adapt the
actual implementation while preserving the high-level semantics. This abstract
semantics thus acts as a logical contract specification, and non-determinism ap-
pears as a way to express partial knowledge in these contracts (which is our
initial limitation theorem states is a necessary feature so as to have powerful
enough self-knowledge).

Another way out is to see that the limitations stem from classical logic:
it is the principle of the excluded middle that induces the existence of “true”
and “false” facts about the system, among those that are neither provable nor
refutable. If we use intuitionist logic, then the paradox disappears: are considered
“true” facts that are provable, and “false” facts that are refutable, other facts are
just unobservable. Now, provability and refutability are recursively enumerable
concepts: you can enumerate all valid proofs and refutations, and the facts they
prove or refutate. The set of objects that provably have the same semantics as
a given object is thus recursively enumerable, and it is possible to implement
a reification function that completely reify the semantics with respect to intu-
itionist logic. Even if we consider such a system from a classical logic point of
view, any discrepancy between the reified semantics and the “real” semantics is
unobservable.

4.2 Metalogical Reflection

The latter solution to having correct reification in a computational system sug-
gests that such a computational system would not only reify computation, but
also logical reasoning about computation: indeed, to enumerate provably equiv-
alent sources for a given programs means that there is virtually a full-fledged
proof system within the system. At least, it is possible to “semi-compare” two
programs as far as may logic is concerned, by taking action when they have a
common source representation (that is, there is a computation that may ter-
minate if and only if two programs have same semantics). Let us thus consider
reification of the logic, and see if it requires more (finitely or indefinitely) than
reification of the computation, or if it comes granted with “mere” reification into
source.

Since the most simple non-trivial observer in our framework is convergence
or divergence of terms, it makes a natural choice when it comes to modeling
that an assertion “holds”, all the more since convergence is a recursively enu-
merable concept. We have described in [28] how a to express intuitionist logic in
a non-deterministic call-by-value λ-calculus extended with ∩ (non-deterministic
conjunction) and ✁ (semantic comparison of expression as in §2.4): every expres-
sion can be considered as a logical statement that holds if and only if evaluation
of said expression may terminate. a ∩ b can be used to express the fact that a

and b are both hold at once (and yield a common value), while a ✁ b can be
used to express the fact that a implies b (since b takes all values that a can
take). A truth expression ⊤ can be conveniently expressed as a new primitive
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one that may take any value that any other expression may take (so that for
any expression E, E ✁ ⊤ holds). For convenience, it can be also decided that
a✁ b behaves like ⊤ when it holds (and obviously like ⊥ when it doesn’t). The
result is a logic framework that integrates well with the computational theory of
untyped non-deterministic λ-calculus, just like logic frameworks based on Type
Theories integrate well with typed λ-calculi (see for instance Coq [8]).

Such a system, if it can be consistently modeled, would be very attractive.
Now, can it? If we already had a computable reification function in a system
C with computable semantics, within a finitarily presented logical metasystem
M (which all assumes we are in a metametasystem), then we could achieve full
metalogical reflection within C (with respect to M) using the following slogan:

metalogical reflection = metacomputational reflection + Gödel encoding.

Indeed, there would exist an algorithm (a priori external to C) that would enu-
merate proofs within M that one term of C may yield more values than another
one; now, since C can do any Turing-equivalent computation on an internal data-
structure, it can in particular implement this very algorithm with respect to the
image of R, so that ✁ (and similarly other logical primitives) are implementable
in terms of R! Of course, the adequation between this internal algorithm is some
kind of magic due to a metametatheorem external to C. This all proves that met-
alogical reflection requires no more power of expression than metacomputational
reflection already grants. However, this doesn’t (yet) provide with a reflective
computational system, since we supposed the existence of such a system to begin
with!

4.3 Bootstrapping Reflection

If a computable reflective system is possible, the theory of computability ensures
that it can be bootstrapped from any Turing-equivalent system (though perhaps
a bit more easily in systems with suitable pre-reflective properties than in other
ones) by writing a suitable evaluator.

We haven’t discussed the case for evaluators much in the rest of the article,
being satisfied with hypotheses of existence, that we know are satisfiable in many
systems like usual λ-calculus or recursive function theory. Indeed, for any com-
putable system, it is possible by definition to have a computable interpreter in a
suitable metasystem; some systems are not “regular enough” for such interpreter
to be internal to the calculus, although, by the Turing universal property, we can
always embed irregular systems within regular ones, as long as they exist. The
art of the metacircular (internal) interpreter [25] ensures that the regular case
indeed exists, where an evaluator is expressible within the system itself without
a need for an additional primitive, though with a touch of “magic” for bootstrap
purposes (actually a metametahypothesis relating the system to its semantics as
observable in a metasystem).

Now, we’re precisely trying to achieve the magic of reflection, a strong static
magic that makes a few “universal constants” have some miraculous fitness prop-
erties, and that we want to embed once and for all inside the system, instead of
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having to appeal to renewed external magic, to repeated miracles and continuous
divine intervention, every time we need to do metaprogramming (an art that is
nevertheless important per se, even in absence of reflection, as we argue in [27]).

To build a simple computable reflective system C
′, consider within a universe

U a finitary logical system M capable of expressing computability, and calculus
C with suitable properties that we know are implementable, such as the exis-
tence of eval and quote functions as in original interpreted LISP systems [20,15].
Since M is finitary, its proofs are recursively enumerable, and it has model M0

in C that itself includes a copy C0 of C; it is thus possible to computably express
within C the provability of logical statements in M0 about programs in C0. We
may then consider a language C

′ with representation C
′

0 that enriches the sig-
nature of C with for logical primitives ✁, ∩, ⊥, ⊤, etc, and define its semantics
through an interpreter internal to C. Evaluation rules for logical primitives con-
sists in applying a function that tests provability of the corresponding predicate
to the reified representation of the arguments; that is, we inductively transform
statements from C

′ into statements in C, replacing logical statements by their
explicit implementations.

It is important that in the above construction, the low-level representation
itself is not directly accessible in C

′ which would break referential transparency
and yield an explicit calculus; instead, it is only used within the implementation
of logical primitives, that, by definition, preserve the semantics as observable
by M. A referentially transparent reification R can be constructed as the com-
putable inverse of explicit evaluation as explained in earlier sections. All in all,
terms of C′ are made to be denotationally equal by the observational semantics
if and only if they are provably equal by M, and else unequal, because they
are distinguishable by difference of mutual and self comparison! So indeed, the
semantics is completely and correctly reified with respect to M.

Of course, completeness and correctness of reflection in C
′ are proven inside

a universe U that contains M as an object and serves as a metametasystem for
C. Now, U might have more axioms than M can prove, at which point the se-
mantics of C′ would distinguish more objects than that of C (as can be observed
within U but not M), so that objects in C

′ be lower-level than C (from the
stand-point of someone in U). Beyond philosophical considerations about logic
and truth in a reflective system, the practical problem is that one cannot easily
extend the constructed reflective system C

′ with new primitives and new ax-
ioms, because its semantics relies precisely on the correctness and completeness
of a given metacircular interpreter in a given logic. This suggests that a use-
ful reflective system should have a way to internally express modalities within
which different axioms hold and different primitives are available, which could
be implemented with an open-interpreter that can be explicitly extended and
“sealed” in differently extended contexts.
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5 From Reflection to Distributed Systems

5.1 Opening the System

Now, internal reflection seems quite a feat to achieve (if possible), but what does
it bring, besides philosophical interest? Indeed, by definition of computability,
given any couple of computable data-structures, computation systems in which
they are internally modeled can have no more functions from the former to the
latter than has any Turing-equivalent system, reflective or not. What kind of
expressive power, then, does reflection bring?

We have given answers to such a question in a previous article [27]; the
idea is that Turing-equivalence is a very important concept, but that the set of
statically computable functions it considers do not take into account the dynamic
development process. By considering the approximate cost of development as
the quantity of human-computer interactions needed between two iterations of
development process, we proved that metaprogramming could cut down the cost
of development towards the Kolmogorov Complexity of what it was without it.
This suggests that any enhancement in internal expressiveness brought to a
language by metaprogramming and reflection would be observable by dynamic
interactions only.

The natural way to add dynamic interactions as an observable behavior of
programs in a formal calculus is to consider concurrent process calculi, the most
promising of which seems to us to be the join-calculus [14] (unlike what sug-
gests the title of the article, the join-calculus is not a reflective calculus, but
instead a higher-order calculus, that eliminates some nuisances of π-calculi and
can model actors in a nice and straightforward way). Such calculi have intrin-
sic non-determinism due to asynchronicity of concurrent parallel reduction, and
most interestingly, they are a natural target for CPS transformations such as we
used earlier [3]; indeed, CPS terms obviously do not use the full power of the
λ-calculi in which they are traditionally expressed. Also, communication allows
for observation of the time when non-deterministic decisions are taken, which
was one of our earlier concerns. Finally, they correspond more closely than static
calculi to the way people interact with computers, and computers (and computer
processes) interact with each others.

In such systems, we expect as we do in the above-mentioned article, that the
expressive power of a language lies in the set of contracts that may be passed
by people (or actors) exchanging data over a given set of channels, that is, by
the achievable states of trusted mutual knowledge in the system. The richer the
algebra of expressible contracts, the more expressive the language. We conjec-
ture that using such a criterion, reflective systems might be proven (much) more
expressive than non-reflective systems, by allowing negotiation of high-level fea-
tures without tying them to a particular low-level implementation (reflection
may be viewed as a mechanism to achieve quotienting and non-deterministic se-
lection of a representent for every considered element of a quotiented structure).
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5.2 Metaobjects and Semantic attachment

When considering communicating systems, there comes the question of what to
reify. An obvious and easy answer would be to reify the whole running program,
that is, the whole world of running agents, into a datastructure, and pass it as an
argument to a whole-world continuation. Only this means that we would consider
all interactions as internal, and the whole world as a same static program observ-
able by its only eventual outcome; that is, despite change in language structure,
we would be actually facing the exact same reification as before, without much
interest as far as expressiveness is concerned. Also, reifying the whole world has
implementation and security issues that make it unsuitable in any non-trivial
(and possibly world-wide) distributed system. At the other end of the contin-
uum of ways to reify, the system would be divided into “atomic” agents, and
reification of an agent would allow to reify its internal state and intercept its
incoming and outgoing connections. Between these two extremes, there are as
many ways to reify as there are ways to split the system into a set of “internal”
and “external” communications (which in the case of mobile calculi, might be a
dynamic notion), that is, to define the “limits” of an agent. Things get only more
interesting as multiple concurrent reifications would attempt to reify overlapping
sets of communications.

Another issue with reification in communicating systems is the consistency
between the representation and the agent: depending on the uses, the repre-
sentation could be read-only or modifiable; the agent itself being read-only or
modifiable, there comes the question of whether changes to one should or not
be automatically reflected into the other, with what coherence. A commonly
adopted solution, that of “metaobjects”, is that the reified object is given a
standard continuation and replaces the object. Another solution is that of se-
mantic attachment, as introduced in Weyrauch’s works about reflection in FOL
[34]. By semantic attachment, the operator can create correspondences between
abstract objects of a formal logic system and concrete objects in the under-
lying (or an external) system. It looks like the two approaches are related as
linear logic is related to usual monotonic logic: in the first case, the metaobject
replaces the object; in the second, both have indefinite extent, and are mostly
interchangeable, except that one form is preferred for efficient ground reductions
while the other is preferred for powerful abstract reasoning.

All in all, there seems to be a very rich algebra of possible reflection con-
cepts within communicating systems; a logic suited to reify the semantics of
such systems will likely include non-monotonicity, in the form of linear logic or
otherwise modalities. A whole exciting field of research awaits us, that we have
hardly begun to explore.

6 Conclusion

6.1 Achievements

We have pin-pointed a fundamental limitation regarding reflection in compu-
tational systems. We have proposed non-determinism as a framework to spec-
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ify partial knowledge in a computational system, and in particular partial self-
knowledge. We have explored the basic semantics of non-deterministic λ-calculi
as compared to the deterministic case, and suggested relations with logic pro-
gramming. We have shown that faithful reification of the semantics of high-level
objects provides not only with a computational reflection but also a logical re-
flection, and have consequently constructed a reflective system starting from
reified finitary logic. Finally, we have justified how further work on reflection in
general should naturally be done in dynamically communicating systems, not
mere statically computing systems, and have tried to overview the difficulties
that await us there.

6.2 Further Research

Most importantly, we still have to implement formal proofs of our theorems
within a trustable computerized logic system. Although we think our proof
sketches are basically correct, the precise difficulties on which we’d stumble might
bring some insight on the implementation of actual useful reflective systems.

We have only begun to study how source code reification, in a fully reflective
system or in more modest ones, interacts with side-effects, and more generally
parallelism and communication. We have only guessed the difficulty that resides
in the specification of the “limits” up to which an object is to be reified.

We intend to formally specify and effectively implement a reflective concur-
rent programming system as suggested in the article.

6.3 Related Works

Though it’s always been obvious to all people involved that reification is in-
trinsically a one-to-many concept, the idea of using non-determinism to cleanly
formalize computational reification was initially suggested to us by Fergus Hen-
derson [17] whose logic programming language Mercury [32], allows for reification
in an evaluation mode of committed-choice non-determinism (equivalent of the
call-by-value non-determinism above). We weren’t convinced at first, until we
found quite similar results in our Master’s Thesis, under Jacques Chazarain’s
guidance, while building a logical framework around applicative λ-calculus (as
embodied by a pure subset of Scheme) [28]: termination naturally appeared as
an intrinsic truth value, and logical or as McCarthy’s ambiguity operator [21],
whence the rest followed.

As for earlier work concerning non-determinism in theoretical λ-calculus,
there is an interesting review by Meldal and Walicki [22]. As far as actual com-
putational systems go, it looks like there is a taboo against breaking the foun-
dational theorems of confluence in λ-calculi and most works deal with “don’t
care” non-determinism, that is clustered in ways such that it is not relevant to
the result of the overall computation. Practical implementations generally focus
on deterministic semantics, too, since traditional monoprocessors are intrinsi-
cally deterministic. However, non-determinism does appear in even the most
formalized programming language standards, where for instance, the order of
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evaluation of arguments is not specified [18]. Non-determinism is also a fact of
life when using the logic programming paradigm as found in languages such as
Prolog, Oz, Mercury, or extensions to existing programming languages such as
Screamer [30]. Furthermore, it is inevitable as soon as asynchronism is present,
in the form of multithreading, multiprocessing, and distributed computing, or
even just interrupt-based input/output.

As for reflection in logical systems, it looks like the idea of fully integrating
a logical framework in a Turing-equivalent computational system dates back to
Curry’s illative combinatory logic [9,10]. Curry wanted to encode a self-standing
logic based on a λ-calculus enriched with logical operators (or more precisely an
equivalent calculus with a finitary combinator-based presentation). But, as far
as we know, he could never propose a model for such a theory, and could only
give a combinatory presentation to what are now well-known as type theories
for λ-calculi (in particular, we are not aware that he would have ever considered
non-determinism). If it is indeed possible to specify reflective systems as we
conjecture, such systems would be the first models to somehow match Curry’s
expectations for an illative logic. More recent work on the general topic include
the reflective frameworks added to NuPRL, as tower of universes [19]. We are
personally not satisfied with such static towers, that require the user to manually
give a static bound for the level of the tower in which resides a term, which we
feel is like asking him to manually give a static bound for the depth to which a
function may recurse. Another promising framework to simply express reflection
is rewrite logic [5], that seems to make the concept of an open interpreter much
easier to implement, by allowing incremental addition of rewrite rules within
existing rule-sets without having to break and remake explicit fix-points.

A The Authors

Department DTL/ASR at CNET, headed by Jean-Bernard Stefani, is involved
in the formalization and implementation of the Architecture of (asynchronous)
Distributed Systems, such as those to be used in a telecommunications operator
company. The stringent requirements for continuous real-time service of the sys-
tems we consider imply that hardware and software evolution must be regarded
as dynamic implementation of a single system, rather than stopping a system
and starting a new one every time.

Metaprogramming appears to us as a natural tool to manage the complexity
of the task, and Reflection as its natural extension for pushing useful metapro-
grams into the runtime for automatic program adaptation. However, such tech-
niques currently lack any formalized semantics, hence any large scale communi-
cability and trustability. Thus, we have undertaken a study of such semantics,
beginning with the simplest case in programming languages, untyped λ-calculus,
although we intend to use it in concurrent process algebras with a variety of im-
plicit analyses and their induced typesystems.



Reflection, Non-Determinism and the λ-Calculus 21

References

1. Henry G. Baker and Carl Hewitt. The Incremental Garbage Collection of Processes.
In SIGPLAN Notices, volume 12, 8, pages 52–59. ACM, August 1977.

2. H. P. Barendregt. The Lambda Calculus, Its Syntax and Semantics, volume 103
of Studies in Logic and the Foundations of Mathematics. North-Holland, revised
edition, 1985.

3. Gérard Boudol. The π-calculus in direct style. In Proceedings of the 24th ACM
SIGPLAN-SIGACT Symposium on Principles of Programming Languages, pages
228–241, January 1997.
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