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(define (fix p b)
  (define f (p (lambda i (apply f i)) b))
  f)

(define (mix c p)
  (lambda (f s)

  (c f (p f s))))

https://github.com/metareflection/poof
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Prototypes: Object-Orientation, Functionally

François-René Rideau, Alex Knauth, and Nada Amin

(define (instantiate proto base)
  (define self (proto (lambda i (apply self i)) base))
  self)

(define (inherit child parent)
  (lambda (self super)

  (child self (parent self super))))

https://github.com/metareflection/poof
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What IS in the Paper
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What IS in the Paper

Object Systems defined in the λ-calculus

Fundamental concepts established

Inheritance elucidated

Prototypes before Classes

Purity before Mutation

Constructive Semantics
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What is Object-Orientation about?

Incrementality Open Recursion

                             

Modularity Ad hoc Polymorphism
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What is Object-Orientation NOT about?

Classes

“Encapsulation”

Inheritance being opposed to Composition

Mutation everywhere
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What is Object-Orientation NOT about?

Classes

“Encapsulation”

Inheritance being opposed to Composition

Mutation everywhere
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Fundamental Concepts

Incrementality: Instances and Prototypes

Inheritance: Wrappers and Generators

Generality: Prototypes beyond records

Multiple inheritance: modular dependencies

Conflation: Object = Prototype × Instance

Type Prototypes: Classes and Elements
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Simplest Incrementality
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Simplest Incrementality

Instance: value to specify incrementally

Prototype: increment of specification
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Simplest Incrementality

Instance: value to specify incrementally

Prototype: increment of specification

instantiate: prototype → instance

inherit: prototype prototype → prototype
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Simplest Instances: Records as Functions

Record: Symbol → Value

(define (my-point msg)
  (case msg ((x) 1)

((y) 2)
(else (error "invalid field"))))

> (my-point 'y)
2
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Simplest Prototypes: Wrappers

; (deftype (Proto Self Super)
;   (Fun Self Super → Self st: (⊂ Self Super))))

; : (Proto Self Super) Super -> Self
(define (instantiate proto base)
  (define self (proto (λ i (apply self i)) base))
  self)

; : (Proto Self Super) (Proto Super S2) -> (Proto Self S2)
(define (inherit child parent)
  (lambda (self super)

  (child self (parent self super))))

14



Simple Prototypes at work

(define (my-point msg) (case msg ((x) 1) ((y) 2) (else (⊥))
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Simple Prototypes at work

(define (my-point msg) (case msg ((x) 1) ((y) 2) (else (⊥))

(define ($x3 self super)
  (λ (msg) (if (eq? msg 'x) 3 (super msg))))
(define ($double-x self super)
  (λ (msg) (if (eq? msg 'x) (* 2 (super 'x)) (super msg))))
(define ($z<-xy self super)
  (λ (msg) (case msg

((z) (+ (self 'x) (* 0+1i (self 'y))))
(else (super msg)))))
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Simple Prototypes at work

(define (my-point msg) (case msg ((x) 1) ((y) 2) (else (⊥))

(define ($x3 self super)
  (λ (msg) (if (eq? msg 'x) 3 (super msg))))
(define ($double-x self super)
  (λ (msg) (if (eq? msg 'x) (* 2 (super 'x)) (super msg))))
(define ($z<-xy self super)
  (λ (msg) (case msg

((z) (+ (self 'x) (* 0+1i (self 'y))))
(else (super msg)))))

(define $your-point (inherit $z<-xy (inherit $double-x $x3)
(define your-point (instantiate $your-point my-point))
> (your-point 'z)
6+2i
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Compare: Single Inheritance

; (deftype (Gen A) (Fun A -> A))
; instantiate-generator : (Fun (Gen A) -> A)
(define (instantiate-generator g)
  (define f (g (λ i (apply f i)))) f)
 
; proto->generator : (Fun (Proto A B) B -> (Gen A))
(define (proto->generator p b) (λ (f) (p f b)))
; (== (instantiate-generator (proto->generator p b))
;     (instantiate p b))
 
; apply-proto : (Fun (Proto A B) (Gen B) -> (Gen A))
(define (apply-proto p g) (λ (f) (p f (g f))))
; (== (apply-proto p (proto->generator q b))
;     (proto->generator (inherit p q) b))
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Beyond Simple Records

Prototypes for any type of instance...

Prototypes build computations, not values (CBPV)

Functions, thunks, delayed or lazy values

Useful even without record subtyping
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Multiple Inheritance

Make  Wrapper dependencies modular

Users specify dependency DAG in local increments

System computes and linearizes global DAG

Prototype = Wrapper × List(Prototype) × …
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Conflation of Instance and Prototype

We can do all OOP without “objects”,

maintaining instance/prototype distinction, but…

Object = Prototype × Instance

Conflation works better with purity

Conflation without Distinction ⇒ Confusion
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Classes

Class OO = Prototype OO at meta-level

Instance = Type descriptor (fields, operations…)

Class = Prototype for Type descriptor

Abstract vs Concrete Class = Prototype vs Instance

Subclass ≠ Subtype

Classes: pure at meta-level (but multimethods…)

‘object’, ‘instance’ meanings differ in Class vs Proto
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Mutation

Easy to extend pure model with mutation

More efficient in linear case, less with sharing

Simplified  self/super protocol

Challenge: cache invalidation

• mutable slots vs derived slots

• mutable supers vs precedence list
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Constructive Semantics

Denotational Semantics × Practical Implementation

30 loc prototype OOP in any λ language

50 loc more for multiple inheritance

No side-effect needed, but better with laziness

Records need subtyping or dynamic types

Classes also need staging or dependent types
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Related Work

(Stateful) Prototypes: 1970s: Director, ThingLab;
1980s: T, SELF; 1990s: JavaScript

Semantics: 1980s Semantics (Reddy; Cook...);
1990s Types (Cardelli; Pierce...)

Composable Mixins: 1990s StrongTalk… (Bracha);
2000s Racket, Scala, Haskell…

Pure Functional Prototypes: 2004 GCL (Google);
2014 Jsonnet, 2015 Nix
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Future Work

Multiple dispatch (multimethods)

Method Combinations

Generalized Prototypes (with lenses)

Usable static types

Better caching control

26



Paper Claims (redux)

Define Object Systems in the λ-calculus

Establish fundamental concepts

Elucidate Inheritance

Prototypes before Classes

Purity before Mutation

Constructive Semantics
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Meta Claims

Humility, not fanaticism

Incommensurable paradigms? Go wider!

Simplicity matters

λ’s for Semantics, macros for Syntax
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Questions?

Paper  (23 pages, 33 w/ appendices)

https://github.com/metareflection/poof

Gerbil Scheme implementation  (3 kloc w/ library)

https://github.com/fare/gerbil-poo

Nix implementation  (~80 loc w/ multiple inheritance)

https://github.com/NixOS/nixpkgs/pull/116275

We’re hiring at MuKn!

jobs@mukn.io
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