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Abstract. We argue that the essence of Object-Orientation (OO) is
a mechanism for reified (in-language) Incremental Modularity: we do
it by first making a semi-formal problem statement, then identifying
the simplest solution from first principles, thereby reconstructing the
basic concepts of OO on top of the pure _-calculus. We discuss how
various features of OO languages can facilitate or hinder this Incremental
Modularity, from forms of inheritance, to classes themselves, to mutation.
Our exploration yields answers that sometimes coincide with prevalent
academic discourse or industrial practice, but sometimes goes against
one or both.

1 The Essence of OO

1.1 OO in 2 lines of FP

Our previous paper (Rideau et al. 2021) shows how to reduce Object-Orientation
(OO) to a few lines of Functional Programming (FP). Its kernel consists of just
two one-line functions—reprised and detailed in section 3.2. These functions
slightly generalize formulas known in theory for many decades (Bracha and
Cook 1990), and actually used as the basis of practical implementations for
many years (Simons 2015). That paper then uses and extends this technique to
implement several complete Object Systems, in a few tens of lines of code each,
in any language that can express higher-order functions.

1.2 OO as Incremental Modularity

In the above paper, we briefly mention how OO is a mechanism to specify
computations in modular increments, and how modularity justifies using
multiple inheritance over mixin inheritance, or conflating of prototypes and in-
stances (or classes and types) over keeping them separate.

In this present paper, we will elaborate on this relationship between OO and
Incremental Modularity. Without presenting a complete theory of Modularity



(sketched in Rideau (2016)) we introduce some semi-formal criteria for what
Modularity and Incrementality mean. We can then make our previous claims
about OO and Modularity more explicit and less informal.

1.3 Claims

The present paper claim the following original contributions:

– Dispel common misconceptions as to what OO is about (section 1.4).
– Propose criteria for Modularity (section 2.1) and Incrementality (section 2.2)

in terms of information needed to make software modifications.
– Elucidate how Incrementality and Modularity go together (section 2.3).
– Map the basic concepts of OO to modularity and incrementality (section 3.1),

as embodied in the simplest kind of OO Prototypes using mixin inheritance
(section 3.2).

– Explain how single inheritance is less expressive and modular than mixin in-
heritance (section 4.2), that is less so than multiple inheritance (section 4.3).

– Show how “structs” with the performance benefits of single-inheritance can
be expressed in a system with multiple-inheritance (section 4.3.6).

– Discuss how purity and laziness make OO more modular, and solve difficult
initialization order issues (section 5.1).

– Discuss how purity and laziness make OO more modular, and solve difficult
initialization order issues (section 5.1).

– Expose the conflation between prototypes and instances (or classes and
types) at the heart of most OO, and why it contributes to modularity (sec-
tion 5.3).

– Clarify the relationship between Prototype OO and Class OO, and why
Prototypes, being first-class, enable more modularity (section 6).

– Generalize OO methods from fixed slots to functional lenses, very simply
enable modular features like method combinations (section 7.1.5).

– Show how the “typeclass” approach can be more composable and thus more
modular than the “class” approach (section 7.1.3).

– Provide a pure functional modular solution to issues with multiple dispatch
vs single dispatch, friend classes or mutually recursive classes, by making li-
brary namespace management an explicit part of the language (section 7.1.7).

Many of the concepts and relationships we tackle have long been part of
OO practice and lore, yet have been largely neglected in scientific literature and
formalization attempts.

1.4 What OO is not about

We make the bold claim that the essence of OO is Incremental Modularity. Yet,
many other slogans or concepts have been claimed to be essential to OO in the
past. We can summarily dismiss those claims as follows:



Classes Many think that classes, as introduced by Simula 67 (Dahl et al. 1968)
(though implementing a concept previously named by Hoare (Hoare 1965)), are
essential to OO, and only ever care to implement, use, formalize, study, teach or
propagandize class-based OO (a.k.a. Class OO).

Yet the existence since 1976 (Adams and Rees 1988; Borning 1977, 1979, 1981;
Kahn 1976, 1979; Rees and Adams 1982) of languages using class-less prototype-
based OO (a.k.a. Prototype OO) (Borning 1986; Chambers et al. 1989; Lawall
and Friedman 1989; Lieberman 1986), and the fact that the single most used OO
language in the world, JavaScript (GitHub 2022), uses prototypes (International
2015), provide clear counter-evidence to this belief. The original inventors of
OO also later unified classes, prototypes and procedures into a general notion of
“patterns” (Kristensen et al. 1987), which also voids any appeal to their authority
in declaring classes as such as essential to OO.

Of course, classes are an important concept in OO. The situation is similar to
that of types in FP, in which they are an important though not essential concept,
as evidenced by the historical preexistence and continued use of the untyped _-
calculus and the wide adoption of dynamically typed functional languages like
Scheme or Nix. Actually, we’ll demonstrate below in section 6 how classes are a
indeed special case of prototypes, and how they precisely relate to types.

Imperative Programming Many people assume that OO requires that all
slots of all objects should be mutable, or be so by default, and that OO requires
mutation deep in its object initialization protocols. Furthermore, they assume
the same eager evaluation model for function calls and variable definitions as in
every common imperative language.

Meanwhile, many have of late claimed that purity (the lack of side-effects
including mutable state) is essential to FP, making it incompatible with OO.
Some purists even argue that normal-order evaluation (call-by-name or call-by-
need) is also essential for true FP, making it even more incompatible with OO.

Now there are many good historical reasons, having to do with speed and
memory limitations at runtime as well as compile-time for which the first OO
languages, as well as most languages until recently, were using state and side-
effects everywhere, and an eager evaluation model, at least by default. Yet with
early 1980s slogans like “objects are a poor man’s closures” and “closures are a
poor man’s objects” (Adams and Rees 1988), the problem back then was clearly
not whether OO could be done purely with functions, but whether it made
practical sense to program purely with functions in general. That question that
would only be slowly answered positively, in theory in the early 1990s and in
practice in the mid 2000s to mid 2010s, as Haskell grew up to become a practical
language.

Yet, there are (a) pure models of OO such as those of Kamin, Reddy, Cook
and Bracha (Bracha and Cook 1990; Cook 1989; Kamin 1988; Reddy 1988), (b)
pure lazy dynamic OO languages such as Jsonnet or Nix (Cunningham 2014;
Dolstra and Löh 2008), and pure OO systems such as presented in this paper
and its predecessors (Rideau et al. 2021) and (c) languages happily combining



OO and FP such as Common Lisp or Scala with plenty of libraries restricting
themselves to pure functional objects only. These provide ample evidence that
OO does not at all require mutation, but can be done in a pure setting, and
is very compatible with FP, purity, and even with laziness and normal-order
evaluation. We could even argue that Haskell typeclasses embody OO (Rideau
2012; Wadler and Blott 1989), though its designers might not wholly embrace
the OO tradition.

Inheritance as opposed to Composition Some argue that the essence of OO
is to choose a side in a conflict between Inheritance and Composition, wherein
one has to model every possible domain in terms of inheritance, especially so
where it can be preferred compared to alternatives not involving it, and even
more so when such alternative involves FP and composition.

But OO and FP are just distinct concepts neither of which subsumes the
other, that thus fit distinct sets of situations. It makes no sense to oppose them,
especially not when we see that OO can be expressed in a few lines of FP, whereas
most modern OO languages contain FP as a subset.

The argument is actually a distortion of a legitimate question of OO design,
wherein one has to decide whether some aspect of a class (respectively prototype
or pattern) embodied as slots or method functions, should be included directly
in the class (a) by inheriting from another class defining the aspect (the class
is-a subclass of it — inheritance of classes), or (b) indirectly by the class having
a slot containing an object of that other class (the class has-a slot that is it —
composition of classes seen as object constructor functions).

The answer of course depends on expectations about how the class will be
further specialized within a static or dynamically evolving schema of data struc-
tures and algorithms. If the schema is small, static, well-understood and won’t
need to evolve, it doesn’t really matter which technique is used to model it.
But as it grows, evolves and boggles the mind, a more modular and incremental
approach is more likely to enable adapting the software to a changing situation,
at which point thoughtful uses of inheritance can help a lot.1

1 Is a car a chassis (inheritance), or does it have a chassis while not being it (composi-
tion)? If you’re writing a program that is interested in the length of objects, you may
model a car as a lengthy object with a length slot, and a chassis too. Now if your
program will only ever be interested but in the length of objects, you may altogether
skip any object modelling: and only use numeric length values directly everywhere
for all program variables. Is a car a chassis? Yes, they are both their length, which
is the same number, and you may unify the two, or let your compiler’s optimizer
unify the two variables as they get initialized them from the same computation.
Now if you know your program will evolve to get interested in the width of objects
as well as their length, you might have records with length and width rather than
mere numbers, and still unify a car and its chassis. But if your program eventually
becomes interested in the height, weight or price of objects, you’ll soon enough see
that the two entities may somehow share some attributes yet be actually distinct:
ultimately, both car and chassis are lengthy, but a car has a chassis and is not
a chassis.



Encapsulation Many OO pundits claim that an essential concept in OO is
“encapsulation” or “information hiding” (DeRemer and Kron 1975), though there
is no consensus as to what this or these concepts mean, and no clear definition.

Inasmuch as some people identify encapsulation as the presence of specific
visibility mechanisms (with some slots or methods being public, private or some-
thing in–between), we’ll easily dismiss the claim that it is an essential aspect of
OO by showing that many quintessential OO languages like Smalltalk or Com-
mon Lisp lack any such specific mechanism, whereas many non-OO languages
possess mechanisms to achieve the same effect, in the form of modules defining
but not exporting identifiers (e.g. not declaring them extern in C), or simply
lexical scoping as present in FP (Rees 1995).

On the other hand, inasmuch as this “encapsulation” informally denotes an
aspect of modularity, we’ll argue that the claim of encapsulation being essential
to OO partakes in our better formalized argument according to which OO is
about modularity (and incrementality). See section 2.

Message Passing Alan Kay, who invented Smalltalk and coined the term
“Object-Oriented Programming” notably explained (Kay 2020) that by that
he originally meant a metaphor of computation through independent (concur-
rent, isolated) processes communicating by passing asynchronous messages. This
metaphor also guided the modifications originally brought by Simula to Al-
gol (Dahl and Nygaard 1966).

However, neither Simula, nor Smalltalk nor any claimed “OO” language ac-
tually fits that metaphor. Instead, the only commonly used language ever to fit
it is Erlang (Johnson and Armstrong 2010); yet Erlang is not part of the OO
tradition, and its authors have instead described its paradigm as “Concurrency-
Oriented Programming”. Meanwhile the theory of computation through message-
passing processes was studied with various “process calculi”, that are also foreign
to the OO tradition, and largely unembraced by the OO community.

Moreover, many OO languages generalize and extend their method dispatch
mechanism from “single dispatch” to “multiple dispatch” (Bobrow et al. 1988;
Bobrow et al. 1986; Chambers 1992); their “multimethods” are attached to sev-
eral objects or classes, and there is no single object, class, or single independent
entity of any kind capable of either “receiving” or “sending” a message. Mech-
anisms like typeclasses, while not usually considered part of the OO tradition,
can be seen as isomorphic to classes (Rideau 2012), yet also lack any specific
object to “receive” a message.

Thus, whatever historical role the paradigm of message-passing processes
may have had in inspiring the discovery of OO, it remains a completely different
paradigm, with its own mostly disjoint tradition and very different concerns.

What is usually meant by OO, is a paradigm for organizing code develop-
ment for modularity and reuse, with a notable focus on “inheritance” through
classes or prototypes (or at times “patterns”), usually in a synchronous evalua-
tion framework within a single thread. Whatever clear or murky correspondance



between names and concepts others may use, this paradigm is what we will call
OO and discuss in this article, systematically reducing it to elementary concepts.

2 Modularity and Incrementality

2.1 Modularity

Division of Labor Modularity (Dennis 1975; Parnas 1972) is the organization
of software source code in order to support division of labor, dividing it into
“modules” that can each be understood and worked on mostly independently
from other modules.

A Meta-linguistic Feature Most modern programming languages offer some
builtin notion of modules as “second-class” entities, entities that exist at compile-
time but are not available as regular runtime values A few languages even offer
a notion of modules as “first-class” entities, that can be manipulated as values
at runtime.2 But many (most?) languages offer no such notion; indeed modules
are a complex and costly feature to design and implement, and few language
designers and implementers will expend the necessary efforts toward it at the
start of language’s development.3

Yet modularity is foremost a meta-linguistic concept: even in a language that
provides no support whatsoever for modules within the language itself (such as
C), programmers will find manual and automated means to achieve and support
modularity outside the language. They will:

– copy and paste sections of code as poor man’s modules;
– automate organized concatenation of code snippets with preprocessors;
– divide code in files they can “transclude”, “link” or “load” together;
– transclude “include” files in lieu of interfaces;
– orchestrate building of software with utilities such as “make”;
– bundle software into “packages” they exchange and distribute online;
– create “package managers” to handle those bundles.

When for the sake of “simplicity”, “elegance”, or ease of development or main-
tenance, support for modularity is lacking within a language, this language then
becomes but the kernel of a haphazard collection of tools cobbled together to pal-
liate the weakness of this kernel. The result inevitably ends up being extremely
complex, ugly, and hard to develop and maintain.
2 In between the two, some languages offer a “reflection” API that gives some often

limited runtime access to representations of the module entities. This API is often
limited to introspection only or mostly; for instance, it won’t normally let you call
the compiler to define new modules or the linker to load them. YEt some languages
support APIs to dynamically evaluate code, that can be used to define new modules;
and some clever hackers find ways to call a compiler and dynamic linker, even in
languages that don’t otherwise provide support APIs for it.

3 Unless they develop their language within an existing modular framework for
language-oriented programming, such as Racket, from which they inherit the module
system.



Criterion for Modularity A design is modular if it enables developers
to cooperate without having to coordinate , compared to alternative designs
that enable less cooperation or require more coordination, given some goals for
developers, a space of changes they may be expected to enact in the future, etc.

For instance, the object-oriented design of ASDF (Rideau and Goldman 2010)
made it simple to configure, to extend, and to refactor to use algorithms in
O(n) rather than O(n3) or worse, all of it without any of the clients having to
change their code. This makes it arguably more modular than its predecessor
MK-DEFSYSTEM (Kantrowitz 1991) that shunned use of objects (possibly for
portability reasons at the time), was notably hard to configure, and resisted
several attempts to extend or refactor it.

2.2 Incrementality

Small Changes Developers quickly lose direction, motivation, support from
management and buy-in from investors and customers when they do not have
tangible results to show for their work. Incrementality is the ability for a system
to deliver more rewards for fewer efforts, compared to alternatives. In other
words, incrementality supports a short feedback loop in software development.

A Developer-Interface Feature Incrementality should be understood within
a framework of what changes are or aren’t “small” for a human (or AI?) de-
veloper, rather than for a fast and mindless algorithm. Otherwise, the most
“incremental” design would be to have code produced by gunzip or some similar
decompressor, that can expand a few bits of incremental change into a large
amount of code.

Thus, for instance, changing some arithmetic calculations to use bignums
(large variable-size integers) instead of fixnums (builtin fixed-size integers) in C
demands a whole-program rewrite with a different program structure; in Java
involves some changes all over though straightforward and preserving the pro-
gram structure; in Lisp or Haskell requires no changes, or minimal and local.
Thus with respect to this and similar kinds of change, if expected, Java has a
more incremental design than C, but less than Lisp or Haskell.

There again, incrementality is usually a meta-linguistic notion, wherein changes
happen as pre-syntactic operations on the source code, rather than semantic op-
erations within the language itself. And yet, using reflection and/or considering
the entire “live” interactive development environment as “the system” rather than
a “dead” program in a programming language, these pre-syntactic operations can
be internalized.

A Criterion for Incrementality A design is incremental if it enables
developers to enact change through small local modifications compared
to alternative designs that require larger (costlier) rewrites or more global mod-
ifications (or prohibit change, same as making its cost infinite).



2.3 Incremental Modularity

A Dynamic Duo Modularity and Incrementality work hand in hand: Mod-
ularity means you only need to know a small amount of old infor-
mation to make software progress. Incrementality means you only
need to contribute a small amount of new information to make soft-
ware progress. Together they mean that a finite-brained developer can make
more software progress with a modular and incremental design than with a less-
modular and less-incremental design.

Reducing Costs vs Moving them Around Beware that many designs have
been wrongfully argued as more modular and/or incremental based on moving
code around: these myopic designs achieve modest development savings in a few
modules under focus by vastly increasing the development costs left out of focus,
in extra boilerplate and friction, in other modules having to adapt, inter-module
glue being made harder, or module namespace curation getting more contentious.

For instance microkernels or microservices may make each “service” look
smaller, but only inasmuch as the overall code has been butchered into parts
between which artificial runtime barriers were added; yet each barrier added
involves extra code, actually increasing the incidental complexity of the code in
direct proportion to the alleged benefits, without doing anything whatsoever to
address its intrinsic complexity. These misguided designs stem from the inability
to think about meta-levels and distinguish between compile-time and runtime
organization of code.

Incremental Modularity, Interactively Incrementality does not necessar-
ily mean that a complex addition or refactoring can be done in a single small
change; rather, code evolution can be achieved in many small changes, wherein
the system can assist the developer into only having to care about a small change
at a time, while the system tracks down what are all the small remaining changes
necessary.

For instance, a rich static type system can often be used as a tool to guide
large refactorings by dividing them in manageably small changes, making the
typechecker happy one redefinition at a time after a type modification. This
example also illustrates how Incrementality and Modularity usually hap-
pen through meta-linguistic mechanisms rather than linguistic mech-
anisms, i.e. through tooling outside the language rather than expressions inside
the language.

3 Prototypes

3.1 Internal Incremental Modularity

Internalized Feature Now what if modular increments of computational spec-
ifications could be embodied as linguistic expressions within a programming lan-



guage, that could be manipulated at runtime and studied formally, rather than
just as semi-formal meta-linguistic interactions?

We dub prototype such an embodiment of incremental modularity
within a language . And to narrow the discussion down to a formal context,
let’s consider programming languages with a functional programming core, i.e.
that contain some variant of the lambda-calculus as a fragment, either untyped
or with suitably expressive types (to be determined later).

Embodying Specification To embody some concept in the functional pro-
gramming core of a language that has one, you will necessarily use a function.
Since the concept is the specification of a computation, the function must even-
tually return that specific computation as an output value, given some inputs to
be determined. The type of its output is the type of the target value.

Embodying Modularity Each prototype should be able to contribute infor-
mation that other modules can use while using information from other modules
it depends on. In functional terms, it will be or contain a function with the
former among its outputs and the latter among its input.

Now to maximize the expressiveness of this Modularity in a functional set-
ting, a prototype specifying one aspect of a computation should be able to make
(forward) references to the complete computation being specified itself, so as
to pass it as argument to higher-order functions extracting information about
arbitrary aspects of it. This means the prototype should be or contain a function
with the computation self as input for self-reference, and returns as output a
computation with the specified structure that uses self in an open recursion
for all “self-reference” to aspects the final computation (possibly further refined,
extended or overridden). That function then specifies (part of) a larger specifi-
cation function of which the complete computation will be a fixed-point.

Embodying Incrementality Each prototype should be able to refer not only
to the complete computation with all available information, but also to the
partial computation with only the information specified so far. Thus, it may
examine so-far specified aspects and use them to contribute small modifications
to these existing aspects as well as new aspects based on this information.

In functional terms, the prototype function will take an additional input
super based on which to specify a computation. Thus, to embody incremental
modularity, a prototype will be or contain a prototype function of self and
super returning an enriched self.

Prototype Primitives Prototypes of course depend on whichever primitive
operations support the type of computation being specified; but those are not
specific to prototypes as such. The minimal set of prototype-specific primitives
follows:



– A function that given a prototype specifying a computation (and possibly
some context) returns a complete computation exactly as specified, closing
the open recursion; this function we call instantiate, or fix (for reasons
that will soon be obvious).

– A function to compose, chain, juxtapose and/or cross-reference multiple
smaller prototypes (at least two, maybe more) each specifying some aspects
of a computation, return a larger prototype that contains all these combined
aspects, yet ready to be further composed, keeping the recursion open; this
function we call mix, or inherit (for reasons that will also soon be obvious)

3.2 Simplest prototypes

Mixin Functions The very simplest possible design for prototypes is thus as
“mixin” functions with the following minimal type:
Mixin self super = self Ă super ñ self Ñ super Ñ self
where self is the type of the computation as completely specified, super the
type of the computation as partially specified so far, self Ă super ñ is the
constraint that self should be a subtype of super, and Mixin is the name
introduced by Cannon (Cannon 1982) and reprised and popularized by Cook
and Bracha (Bracha and Cook 1990).

The mixin instantiation and inheritance primitives are as follows:

instantiate : Mixin instance base Ñ base Ñ instance
instantiate = _ mixin base ÞÑ Y (_ instance ÞÑ mixin instance base)

inherit : Mixin instance intermediate Ñ Mixin intermediate inherited
Ñ Mixin instance inherited

inherit = _ child parent ÞÑ _ instance inherited ÞÑ

child instance (parent instance inherited)

or equivalently:

fix : Mixin self top Ñ top Ñ self
fix = _ mixin top ÞÑ Y (_ self ÞÑ mixin self top)

mix : Mixin self super Ñ Mixin super duper Ñ Mixin self duper
mix = _ child parent self duper ÞÑ child self (parent self duper)

Elucidating Mixin Instantiation The instantiate function above computes
a fixed-point instance for a mixin given as extra argument a type-appropriate
base value that serves as seed of the computation being instantiated: an empty
record {}, a function that always fails J = _ _ ÞÑ K, etc. The type of base,
a.k.a. top, is thus a base type for the specified computation: a supertype of the
type instance being computed, a.k.a. self. In a monomorphic setting, base is



just instance itself; with a rich-enough type system, it can be a “top” type for
many distinct types of computations, carrying no information.

The Y combinator is the usual fixed-point combinator, chosen to match the
variant of _-calculus being used (e.g. using eager or lazy evaluation).

Elucidating Mixin Inheritance Mixin inheritance combines two mixins child
and parent into one that given two instances instance and inherited passes
(parent instance inherited) as the super argument to child.

By the time the complete instance and inherited value so far are provided
(if ever), the combined mixin itself may be but part of a wider combination, with
further mixins both to the right and to the left. The provided instance will then
be the fixed-point of the entire wider combination (involving further children to
the left, then child and parent, then further parents to the right). Meanwhile,
the inherited value will only contain the information from applying the further
parent mixins to the right to the provided base object. The parent will be
able to extend (enrich or override) any method definition from the inherited
computation; the child may further extend it, and further mixins to the left yet
more.

The function matches the mix function from the introduction modulo 𝛼-
renaming, well-named since its essence is to compose or “mix” mixins. The func-
tion is associative, with identity mixin idm = _ s t ÞÑ t. As usual, a change
of representation from p to cp = inherit p would enable use regular function
composition for mix, whereas fix would retrieve p as cp idm; but that would
make the types unnecessarily more complex.

Stricter, More Modular Types The types given in section 3.2.1 work well,
but then must be carefully chosen so the self and super used during mixin
definition should precisely match those used during mixin composition and in-
stantiation. This is not a problem if a mixin is used only once (as in single
inheritance, see section 4.2), but it is a problem in the more general case of
mixin inheritance (and in multiple inheritance, see section 4.3).

A more refined type that can be used for mixins is then:
Mixin self super = self Ă super ñ

@ eself Ă self, @ esuper Ă super, eself Ă esuper ñ

eself Ñ esuper Ñ eself
where self and super are the minimal types intrinsic to the mixin, and eself
and esuper are the effective types, respective subtypes of the above, as will
actually be used, depending on the context of instantiation.

This type is an intersection of all variants of the previous type for subtypes
eself and esuper of self and super respectively. It allows a mixin to be de-
fined in its most general form, then used multiple times, each in a distinct more
specialized context, making the mixin definition and its typechecking more mod-
ular. In exchange for this modularity, the mixin is restricted to only act in a
uniform manner, that monotonically preserves arbitrary additional information
passed as arguments to it.



Minimal Design, Maximal Outreach We have just derived from first prin-
ciples a minimal design of prototypes-as-mixin-functions to embody modular
increments of software specification inside a functional programming language.
And this design closely reproduces that of existing models and languages:

(a) It reproduces the earliest general semantic model of OO (Bracha and Cook
1990).

(b) It also reproduces the formal semantics (though not the implementation)
of objects in the pure lazy dynamic functional prototype object language
Jsonnet (Cunningham 2014), a popular choice to generate distributed soft-
ware deployment configurations for Kubernetes or AWS, and was started as
a conceptual cleanup of

(c) the Google Control Language GCL (Bokharouss 2008) (née BCL, Borg Con-
trol Language), which has been used to specify all of Google’s distributed
software deployments since about 2004 (but uses dynamic rather than static
scoping, causing dread among Google developers).

(d) It furthermore reproduces not just the semantics but the actual implemen-
tation of “extensions” (Simons 2015) as a user-level library in the pure
lazy dynamic functional language Nix; these extensions are heavily used by
NixOS (Dolstra and Löh 2008), a Nix-based software distribution for Linux
and macOS, one with thousands of contributors.4

The main difference between our minimal model and the above works is that
our model generalizes them by not being tied to any specific encoding of records,
or indeed to records at all (see section 5.2)

This simplest of object-oriented designs, purely functional prototypes as
mixin functions, has thus been proven capable to literally support specifica-
tion and deployment of software on a world-wide scale. As we’ll see, this design
embodies the primitive core of OO, to which other forms of OO can be reduced.
In the end, we can rightfully claim that the essence of OO in historical intent
as well as practical extent is the incremental modularity embodied as language
entities, and that prototypes are the most direct form of this embodiment.

3.3 Working with Records

Records, Methods, Instances Most OO tradition, including the precedents
cited above, follows the historical restriction of only enabling modular and in-
cremental specification of “records” mapping names to values (Cook 1989; Hoare
1965). The names, the values they are bound to, and/or the bindings, are at
times called “methods”, “slots”, “fields”, “attributes”, “properties”, “members”,
“variables”, or otherwise, depending on the specific sub-tradition.

4 These extensions were reinvented semi-independently by Peter Simons, who did not
know anything about their relationship to Prototypes, Mixins or OO, but was in-
spired by examples by and discussions with Andres Löh and Conor McBride, who
were more versed in this literature.



The records themselves will be suitably wrapped into a proper computation
result instance: a class (in Class OO), an object (in Prototype OO), a typeclass
(in FP with typeclasses, though its users may deny the OO tradition), wherein
the record will embody the “method dispatch table”, “attribute set”, “dictionary”
or whatchamacallit of the aforementioned entity.

Note that this meaning of the word instance itself comes from the Prototype
OO tradition, and does not match what the meaning of the word in the class OO
tradition; in the latter tradition, “instance” instead refers to an element of the
class seen as a type, whereas that type would be the instance in the prototype
OO tradition. For now we will focus on the simplest and most primitive kind
of OO, Prototype OO, in its simplest form where the instances are the records
themselves. We will extend our point of view in section 4 and later.

Encoding Records We will assume that, either with some language primi-
tives, some “builtin modules” to import from, or some variant of Church en-
coding, our Functional Language is suitably extended with the usual essential
data structures: numbers, booleans, strings, tuples, lists. Record keys can be of
a language-appropriate type with a decidable equality predicate: integers (some-
times as named constants at the meta-level), strings, or optionally symbols (in-
terned strings) or identifiers (source code tracking entities).

Records can be defined from the empty record rtop and a constructor rcons
k v r that given a key k, a value v and a previous record r returns a new record
that extends r with a new or overriding binding of k to v. The three simplest
encodings of a record would then be as a function, an alist, or a mapping table,
as follow.

Records as functions is the simplest encoding, and accessing the value for a
key is done by just calling the function with the key. However, overriding and
deletion will leak memory and access time; also they don’t support iteration over
bindings — an introspection operation that is very much desired in contexts like
I/O automation, though best kept hidden in contexts like analysis or restriction
of software effects. The two constructors are as follows:
ftop = J = _ _ ÞÑ K

fcons = _ k v r m ÞÑ if m == k then v else r m
The traditional Lisp “alist” (association list) data structure, singly-linked list

of (key,value) pairs, solves the previous encoding’s issues with memory leak and
lack of introspection, but is still inefficient with linear-time operations. Its two
constructors are as follows:
atop = []
acons = _ k v r ÞÑ [(k,v), ...r]

Records as pure mapping tables can provide logarithmic-time operations; but
their implementation can be complex if not provided as a language primitive.
Binding accessor, binding presence test, binding deletion, etc., are left as an
exercise to the reader. We will write their constructors as follows:
mtop = {}
mcons = _ k v r ÞÑ {k: v, ...r}



In our previous article (Rideau et al. 2021) we showed how you could start
with a simple of records as function, use OO style to incrementally and modularly
specify a more elaborate mapping table data structure, and thereafter use that
data structure in the definition of more efficient further records. That’s our first
case of a “meta-object protocol” (Kiczales et al. 1991), one that illustrates how
to bootstrap more elaborate variants of OO from simpler variants.

Mixins and Helpers for Records Abstracting over the specific encoding for
records, the primitive way to define a mixin that adds a method to a record
being specified is with:
methodG = _ rkons k f s t ÞÑ rkons k (f s t) t
wherein the argument k is a key naming the method, f is a function that takes
the instance s of type self and a inherited record t of type super and returns
a value v to which to bind the method in a record that extends the inherited
record, according to the record encoding defined by rkons.

In practice, OO language implementations provide a fixed builtin encoding
for records, with specialized instantiation function fixR and method-addition
mixin methodR:
fixR = _ mixin ÞÑ fix mixin rtop
methodR = methodG rcons

For a mixin that binds a method to a constant value v, you can then use
methodK k v = methodR k (_ _ _ ÞÑ v)

Common helpers could similarly be defined for mixins that bind a method to
a value that only depends on the instance s of type self and not the inherited
value t of type super, or vice versa.

Further helpers could help define more than one method at once e.g. by
somehow appending record contents rather than consing bindings one at a time.
Furthermore, given macros in the base language, specialized syntax could help
make such definitions concise.

With or without macros, we will assume a syntax a.b for calling an appro-
priate record accessor with record a and method name b suitably encoded as
a key. For simplification purposes, we will hereafter assume method names are
strings.

Meanwhile, we will assume the following helpers to handle lists of mixins
without having to awkwardly nest lots of applications of the mix function, as-
suming bracketed and comma-delimited lists, with [head, ...tails] patterns:
mix* [] = idm
mix* [h, ...t] = mix h (mix* t)
fix* base l = fix base (mix* l)
fixR* = fix* rtop

Giving polymorphic types to these list helpers may require not only subtyping
but also some form of type indexing for those lists. Doing it without requiring
full dependent types is left as an exercise to the reader.



Example Records built from Mixins We can now define the usual point and
colored-point example as follows, where $point is the prototype for the point (in
our simplest prototypes-as-mixin model), and point its instance:
$point = mix (methodK "x" 3.0) (methodK "y" 4.0)
point = fixR $point
$blue = (methodK "color" "blue")
coloredPoint = fixR* [$blue, $point]

Assuming a primitive assert that checks that a boolean value is true, and
an equality predicate that behaves properly for records, we can then assert:
assert (point == {x: 3.0, y: 4.0})
assert (coloredPoint == {x: 3.0, y: 4.0, color: "blue"})

We can further define and use a radius-defining mixin, assuming functions
sqr and sqrt for square and square roots of numbers respectively:
$radius == methodR "radius" _ s _ ÞÑ sqrt ((sqr s.x) + (sqr s.y))
pointWithRadius = fixR* [$radius, $point]
assert (pointWithRadius == {x: 3.0, y: 4.0, radius: 5.0})

Mixin Caveats Note that in the above examples, all the mixins commute, and
we could have changed the order in which we define those methods — because
they never use inheritance nor overrode any method, and instead pairwise define
disjoint sets of methods. Thus merging disjoint commuting mixins embod-
ies modularity, but not incrementality : incrementality can still be achieved
in an extralinguistic way by rebuilding modules in different ways from smaller
modules; but to achieve it intralinguistic, you need a way to operate on existing
modules, which by definition is not commutative.

As a counterpoint, the mixins below do override or inherit previous method
bindings, and therefore do not commute, and instead yield different results when
mixed in different orders:
$v1 = methodK "v" 1
$v2 = methodK "v" 2
$v10 = methodR "v" _ _ t ÞÑ t.v * 10
assert (fixR* [$v1,$v2] == {v: 1})
assert (fixR* [$v2,$v1] == {v: 2})
assert (fixR* [$v1,$v10] == {v: 1})
assert (fixR* [$v10,$v1] == {v: 10})

Finally note that trying to instantiate $v10 alone would fail: it would try
to multiply by 10 the inherited value of v, but the base record rtop has no
such value and this would result in an error. Even without inheritance, the pro-
totype $radius above would also fail to instantiate alone, because it will try
to access undefined methods x and y. This illustrates how not every prototype
can be successfully instantiated, which is actually an essential feature of proto-
types (whether implemented as simple mixins or not), since the entire point of
a prototype is to provide a partial specification of a small aspect of an overall
computation, that in general depends on other aspects being defined by other
prototypes.



4 Mixin, Single, and Multiple Inheritance

4.1 Mixin Inheritance

The Last Shall Be First The inheritance (Taivalsaari 1996) mechanism de-
scribed above is called mixin inheritance. It is arguably the simplest kind of
inheritance to formalize given the basis of FP. It also maps directly to the con-
cepts of Modularity and Incrementality we are discussing. And for these reasons
we introduced it first.

However, historically it was discovered last, because FP wasn’t mature until
much after the time the need for Modularity and Incrementality was felt. It is
also relatively more obscure, probably because, in addition to the above, it is less
modular than the more complex but previously discovered multiple inheritance
(discussed below in section 4.3).

And yet, we already saw above in section 3.2.5 that object prototypes with
mixin inheritance are used to specify software configurations at scale. An elabo-
rate form of mixin inheritance is also notably used in the class-based OO system
used by Racket’s GUI (Flatt et al. 2006).

Mixin Semantics We saw above (section 3.2) that mixin inheritance involves
just one type constructor Mixin and two functions fix and mix:
Mixin self super = self Ă super ñ self Ñ super self
fix : Mixin self top Ñ top Ñ self
fix = _ mixin top ÞÑ Y (_ self ÞÑ mixin self top)
mix : Mixin self super Ñ Mixin super duper Ñ Mixin self duper
mix = _ child parent self duper ÞÑ child self (parent self duper)

4.2 Single inheritance

Simple and Efficient Historically, the first inheritance mechanism discovered
was single inheritance, though it was not known by that name until later. In
(Dahl et al. 1968), a “class” of records (Hoare 1965) uses a previous class as a
“prefix”, reusing all its field definitions and method functions; the text of the
resulting class is then the “concatenation” of the direct text of all its transitive
prefix classes. In modern terms, we call the prefix a superclass, the extended
class a subclass. Single inheritance was made popular circa 1971 by Smalltalk
and later circa 1995 by Java (International 2015).

Single inheritance is easy to implement without higher-order functions; method
lookup can be compiled into a simple and efficient array lookup at a fixed index —
as opposed to some variant of hash-table lookup in the general case for mixin in-
heritance or multiple inheritance. In olden days, when resources were scarce, and
before FP was mature, these features made single inheritance more popular than
the more expressive but costlier alternatives. Even some more recent languages
that support multiple inheritance (section 4.3) also support single inheritance
for some classes (or “structures”), and sometimes the consistent combination of
the two (section 4.3.6).



Semantics of Single Inheritance In single inheritance, the prototypes at
stake, i.e. the entities that embodied increments of modularity, are not the mixin
functions of mixin inheritance, but simpler generators that only take a self as
open recursion parameter and return a record using self for self-reference. The
semantics can reduced to the following types and functions: :
Gen self = self Ñ self
Y : Gen self Ñ self
base : Gen top Ñ top
base = _ _ ÞÑ rtop
extend : Mixin self super Ñ Gen super Ñ Gen self
extend = _ mixin parent self ÞÑ mixin self (parent self)

Note how Gen self is the type of generators for instances of type self; the
instantiation function for a generator is the usual fixed-point combinator Y; the
base object to extend is the generator that always returns the empty record (for
whichever encoding is used for records); and the extend function creates a child
generator from a parent generator and a mixin (as in mixin inheritance above),
where self is constrained to be a subtype of super.

Mind again that in the single-inheritance paradigm, the prototype is the gen-
erator, not the mixin. A prototype-as-generator may thus be the base generator
that returns the empty record rtop or otherwise base instance, or a generator
created by extending a single parent generator with a mixin. Since the same
constraint applies recursively to the parent generator, a prototype-as-generator
can be seen as repeatedly extending that base generator with an ordered list of
mixins to compose. Just like in mixin inheritance, an instance can thus still be
seen as the fixed point of the composition of a list of elementary mixins as applied
to a base instance. However, since generators, not mixins, are the prototypes,
the “native” view of single inheritance is more to see the parent specified in ex-
tend as a direct super prototype, and the transitive supers-of-supers as indirect
super prototypes; each prototype is considered as not just the mixin it directly
contributes, but as the list of all mixins directly and indirectly contributed.

Single Inheritance with Second-Class Mixins While single-inheritance re-
quires some form of mixin, most single-inheritance object systems don’t allow
mixins as first-class entities that can be independently composed. Rather mixins
are only linear second-class syntactic entities and can only be used once, imme-
diately, as part of an extension. You cannot consider a mixin or list of mixins
independently, and append such lists together; you cannot abstract a base or
super instance away from a generator to extract its mixin; you can only cons a
single new elementary mixin to the list of mixins implicit in a previous generator
and already applied to its base.

This will particularly matter when we see that in most Class OO languages,
prototype inheritance happens in a restricted language at the type level, one
with limited abstraction and no way to express appending from consing.

Then again, if language starts with single-inheritance OO, but does allow
mixins as first-class entities that can be composed, then it actually supports



mixin inheritance, not just single inheritance, just like the Racket class system
does (Flatt et al. 2006), or like typical uses of extensions in Nix go. It thus only
makes sense to speak of single inheritance in a context where the language syntax,
static type system, dynamic semantics, or socially-enforced coding conventions
somehow disallow or strongly discourage mixins as first-class entities.

Lack of expressiveness and modularity The limitations to single inheri-
tance translate into lack of expressiveness relative to mixin inheritance. Thus,
in an OO language with single inheritance, you can define a prototype Point
with two coordinates x and y with two children prototypes ColoredPoint and
WeightedPoint that respectively extend it with an attribute color and an at-
tribute weight. But if you want a WeightedColoredPoint that has both color
and weight attributes, you have to choose at most one of the two prototypes
ColoredPoint and WeightedPoint to inherit from, and repeat all the definitions
of the other’s mixin.

In case you want a prototype to possess all the methods defined in each
of two or more long mixins or long lists of mixins are involved, you will have
to repeat all the definitions from all but one existing list of mixins. You can
always resort to copy/pasting the definitions from one class to the other; but
that is unreliable and fragile as maintenance operations now need to happen
simultaneously in multiple copies that the developer must track down, and that
can easily grow subtly out-of-synch as the developer is fallible. Worse, this is an
extra-linguistic means, so that inasmuch as you then still achieve incremental
modularity, it is no longer within the language, only outside it. By contrast with
mixin inheritance or multiple inheritance, you could easily combine together all
the elementary mixins from each of the many prototypes-as-mixins that you
want to simultaneously extend.

This concludes our proof that single inheritance is strictly less expressive (Felleisen
1991) and less modular than mixin and multiple inheritance.

4.3 Multiple inheritance

More Sophisticated A third kind of inheritance is multiple inheritance, that
historically appeared before mixin inheritance was formalized (Cannon 1982),
and that is more sophisticated than the two above. It was popularized by the
Lisp object systems Flavors, Common Loops, New Flavors and CLOS (Bobrow
et al. 1988), then by Self and C++. These days it is notably used in Python,
Scala or Rust.

Like mixin inheritance, multiple inheritance allows developer to create a new
prototype using more than one existing prototype as super prototype, lifting
the main limitation of single inheritance. Like single inheritance, multiple inher-
itance allows developer to declare dependencies between prototypes, such that a
prototype can have indirect, transitive dependencies implicitly included as super
prototypes, as well as direct super prototypes.



Prototypes as a DAG of mixins Since each prototype inherits from multiple
parents rather than a single one, the inheritance hierarchy is not a list, but a
Directed Acyclic Graph (DAG). Each prototype is a node in the overall DAG.
The super prototypes explicitly listed as dependencies it inherits from when
defining it are called its direct supers. But the set of all a prototype’s super
prototypes includes not only those direct supers, but also indirectly the supers
of those supers, etc., in a transitive closure.

The prototype’s supers thus constitute a DAG, that is an “initial” sub-DAG of
the DAG of all prototypes, that includes all the prototypes directly or indirectly
“above” the considered prototype, that is at the very bottom of its DAG. The
super prototype relation can also be viewed as a partial order on prototypes
(and so can its opposite sub prototype relation).

This is in contrast with single inheritance, where this relation is a total order,
each prototype’s super hierarchy constitute a list, and the overall hierarchy of all
prototypes is a tree. This is also in contrast with mixin inheritance, where each
mixin’s inheritance hierarchy can be viewed as a composition tree, that since it
is associative can also be viewed flattened as a list, and the overall hierarchy is
a multitree. . . except that a super prototype (and its own supers) can appear
multiple times in a prototype’s tree.

Each prototype is thus a node in the inheritance DAG. To represent it, a
prototype will then be not just a mixin function, but a tuple of:

(a) a mixin function, as in mixin inheritance, that contributes an increment to
the modular specification,

(b) an ordered list of direct super prototypes it inherits from, that specify incre-
ments of information on which it depends, and

(c) a unique name (fully qualified path, string, symbol, identifier, or other tag)
to identify each prototype as a node in the inheritance DAG.

Precedence Lists Then comes the question of how to instantiate a proto-
type’s inheritance DAG into a complete specification, of how to reducing it to a
generator as for single inheritance.

A general solution could be to compute the instance, or some seed value based
on which to compute the instance, as an inherited attribute of that inheritance
DAG. For instance, a generator (as in single-inheritance above) of which to take
a fixed-point, could be computed by having each mixin function be of type self
Ñ super Ñ self where each direct super prototype is of type super_i and
super is the product of the super_i.

However, the increment of specification from each prototype must be taken
into account once and only once in the overall specification; and the order in
which these increments are taken into account must be consistent from one
method computation to another. If individual mixin functions had to take a
tuple or list of inherited attributes, they would have a hard time untangling the
already mixed in effects of other mixins, to reapply them only once, what more
in a consistent order.



Therefore, multiple inheritance uses a more refined mechanism, wherein the
inheritance DAG for a prototype is reduced to a list of prototypes, the prece-
dence list. An instance is then as per mixin inheritance (or, equivalently, single
inheritance), by combining the mixin functions of the supers, in the order given
by the precedence list, with a universal top value. Each mixin function remains
of type self Ñ super Ñ self, where the super argument is the intersection
of the types super_i, not just of its direct super prototypes, but, effectively,
of all the super prototypes after it in the precedence list (see section 3.2.4 for
handling that gap).

The precedence list is itself computed, either by walking the DAG or as an
inherited attribute, using the prototype names to ensure the unique appearance
of each super in the resulting list. The precedence list can be viewed as a total
order that extends and completes the partial order of the inheritance DAG.
Modern algorithms like C3 (Barrett et al. 1996; Wikipedia 2021) further ensure
“monotonic” consistency between the precedence list of a prototype and those
of its supers, such that the former extends the latter as well as the list of supers
itself.

Complete implementations of prototypes using multiple inheritance in a few
tens of lines of code are given in our previous paper using Scheme (Rideau et
al. 2021), or in a proof of concept in Nix (Rideau 2021). Our production-quality
implementation in Gerbil Scheme (Rideau 2020) including many features and
optimizations fits in about a thousand lines of code.

More Expressive than Mixin Inheritance Multiple inheritance requires
measurably more sophistication than mixin inheritance, and hence an additional
cognitive burden. Why would anyone use that instead of just using mixins?
Because it is more expressive, and more modular, and its cognitive burden pays
for itself by alleviating the other cognitive burdens from developers.

The multiple inheritance is no less expressive than mixin inheritance is simple
enough to prove: you can macro-express (Felleisen 1991) mixin inheritance within
multiple inheritance. Replace each mixin function by a prototype using that
mixin function, a empty direct super list. Keep around lists of such prototypes
rather than mix them, then before you instantiate, create a single prototype with
an identity mixin that depends on the list of mixins as direct super prototypes,
where each mixin was given a fresh name, to ensure that multiple copies are all
used indeed.

This trick with fresh names at the last minute is necessary to defeat multiple
inheritance otherwise ensuring that a given prototype (as identified by its name)
will be used once and only once in the precedence list. But this unicity is actually
a feature that the users usually want (and if they somehow do want multiple
uses of a mixin, they can explicitly use multiple copies of it with distinct names).

More Modular than Mixin Inheritance In practice there is always a de-
pendency order between prototypes, whether it is reified as an automatically



managed in-language entity as with multiple inheritance, or left as an extra-
language entity that developers must manually keep track of as with mixin in-
heritance. Thus, a prototype may depend on a method having been declared or
implemented by a (transitive) parent, so it may use or override it. That parent
that must appear before it in the precedence list of prototypes (in the right-to-
left order of application to the base instance with the convention we use above).
Moreover, each prototype should appear only once in the precedence list, because
its effects may not be idempotent, or may cancel the effects of other prototypes
found in between two copies.

For instance, consider a dependency DAG such as follows, where among other
things, Z depends on K2 that depends on D that depends on O:

The only way to compute precedence lists for O, A, B, C, D, E yields the
respective precedence lists [O], [A O], [B O], [C O], [D O], [E O]. No problem.

However, consider the precedence list for K1. If computed naively by con-
catenating the precedence lists of the prototypes it directly depends on without
eliminating duplicates, you get [K1 C O A O B O]. This can be a big problem
if re-applying O will undo some of the effects of A or of B. The problem is the
same for K2 and K3 and only worse for Z. Even when all prototypes at stake are
idempotent and commute, this naive strategy will cause an exponential explo-
sion of prototypes to mix as the graph becomes deeper. Meanwhile, a proper
linearization as given by the C3 algorithm would be [K1 C A B O] for K1 and
[Z K1 C K3 A K2 B D E O] for Z. It avoids issues with duplicated prototypes,
and grows linearly with the total number of prototypes however deep the graph.

With mixin inheritance, developers would have to manually curate the order
in which they mix prototypes, extra-linguistically. When using prototypes de-
fined in other modules, they would have to know not just the prototypes they
want to use, but all the detail about the transitive prototypes they depend on.
Their dependency DAG will not be a hidden implementation detail, but part of
the interface. And when some upstream module modifies the dependency DAG
of a prototype, all the prototypes in all the modules that transitively depend
on it will have to be updated by their respective maintainers to account for the
change.

This requires much more information to understood and provided by de-
velopers than if these developers were instead using multiple inheritance, that
automates the production of that precedence list, and its update when upstream



modules are modified. The transitive parts of DAG can largely remain a hidden
implementation detail from those developers who only care about some direct
dependencies. Thus, mixin inheritance is indeed less modular than multiple in-
heritance.

Single and Multiple Inheritance Together Some languages such as CLOS (Bo-
brow et al. 1988) allow for both single-inheritance structs and multiple-inheritance
classes with uniform ways of defining object and methods. Thus, programmers
can benefit from the performance advantage in slot access or method dispatch
possible where there is no multiple-inheritance, while still enjoying the expres-
siveness and modularity of multiple-inheritance in the general case. They can
explore without constraint, and simply change a flag when later optimizing for
performance.

However, in CLOS, structs and classes constitute disjoint hierarchies. Some
languages further allow structs and classes to inherit from each other, within
appropriate constraints. Thus Scala (Odersky and Zenger 2005) allows a single
struct to inherit from classes (except, to fit the Java and Smalltalk traditions
rather than Lisp tradition, it calls the single-inheritance structs “classes”, and
the multiple-inheritance classes “traits”). Gerbil Scheme supports the least set of
constraints that preserve the coherence of both structs and classes, by suitably
extending the C3 algorithm.

C3 crucially frames the problem of superclass linearization in terms of con-
straints between the precedence lists of a class and of its superclasses: notably,
the precedence list of a superclass must be an ordered subset of that of the class,
though its elements need not be consecutive. To support structs and their op-
timizations, we only need add a constraint that the precedence list of a struct
must be a suffix of that of its substructs (when considered in the order from most
specific to least specific, as is customary in languages with multiple inheritance,
after the Lisp original).

At that point, we realize that what characterizes structs is not exactly “single
inheritance” since a struct can now have multiple superclasses, and a class can
now inherit from a struct indirectly via multiple superclasses. There is still single
inheritance of sorts between structures, in the sense that the superstructures of
a structure constitute a finite total order, when you ignore the other classes in
the inheritance. But by this observation, by ignoring these other classes, fails to
characterize structs. Instead, what characterizes structs is this “suffix” constraint
on precedence lists, which include all classes, not just structs. This characteriza-
tion in turn harkens back to the original Simula name of “prefix” for a superclass:
Simula was then considering its single-inheritance precedence list in the opposite
order, from least specific to most specific superclass (though the vocabulary to
say so didn’t exist at the time). And this semantic constraint can be expressed
in a system that has multiple inheritance.

Under-Formalized Many notable papers offer proper treatment of multiple
inheritance as such (Allen et al. 2011).



However, multiple inheritance often remains unjustly overlooked, summarily
dismissed, or left as an exercise to the reader in academic literature that discusses
the overall formalization of programming languages and OO (Abadi and Cardelli
1997; Friedman et al. 2008; Khrisnamurthi 2008; Pierce 2002).

Many computer scientists interested in the semantics of programming lan-
guages seem to either fail to understand or fail to value the modularity enhance-
ment from multiple inheritance over single inheritance or mixin inheritance; or
they are not ready to deal with the extra complexity needed to formalize multiple
inheritance, for instance due to requiring richer type systems. (Cardelli 1984)

And yet languages that care more about expressiveness, modularity and in-
crementality than about ease of writing performant implementations with sim-
pler type systems, will choose multiple inheritance over the less expressive and
less modular alternatives: see for instance Common Lisp, C++, Python, Scala,
Rust.

5 Missing Insights into OO

Here are some topics that are largely neglected by both academic literature and
public discourse about OO, even more so than multiple inheritance, yet that can
yield essential insights about it. Some of these insights may already be known,
but often only implicitly so, and only by a few experts or implementers.

5.1 Pure Laziness

Lazy makes OO Easy In a lazy functional language such as Nix, you can
use the above definitions for fix, mix, methodG and methodR as is and obtain
a reasonably efficient object system; indeed this is about how “extensions” are
defined in the Nix standard library (Simons 2015).

Now, in an eager functional language such as Scheme, using these definitions
as-is will also yield correct answers, modulo a slightly different Y combinator.
However applicative order evaluation may cause an explosion in redundant re-
computations of methods, and sometimes infinite loops. Moreover, the applica-
tive Y combinator itself requires one extra layer of eta-expansion, such that only
functions (including thunks) can be directly used as the type for fixed-points.
Unneeded computations and infinite loops can be averted by putting computa-
tions in thunks, protected by a _; but computations needed multiple times will
lead to an exponential duplication of efforts as computations are nested deeper,
because eager evaluation provides no way to share the results between multi-
ple calls to a same thunk, especially those from the Y combinator. The entire
experience is syntactically heavy and semantically awkward.

Happily, Scheme has delay and force special forms that allow for both lazy
computation of thunks and sharing of thusly computed values. Other applica-
tive functional languages usually have similar primitives. When they don’t, they
usually support stateful side-effects based on which the lazy computation prim-
itives can be implemented. Indeed, an applicative functional language isn’t very



useful without such extensions, precisely because it is condemned to endlessly
recompute expressions without possibility of sharing results across branches of
evaluation — except by writing everything in continuation-passing style with
some kind of state monad to store such data, which would involve quite a non-
modular cumbersome global code transformation.

Computations vs Values To reprise the Call-By-Push-Value paradigm (Blain
Levy 1999), prototypes incrementally specify computations rather than values:
instructions for recursive computing processes that may or may not terminate
(which may involve a suitable monad) rather than well-founded data that always
terminates in time proportional to its size (that only involve evaluating pure
total functions). Others may say that the fixed-point operation that instantiates
prototypes is coinductive rather than inductive.

And indeed, laziness (call-by-need) is the best good way to reify a compu-
tation as a value, bridging between the universes of computations and values.
Compared to mere thunking (call-by-name) that can also bridge between these
universes, laziness enables sharing, with advantages both in terms of perfor-
mance and semantic expressiveness, without requiring any stateful side-effect to
be observable in the language, thus preserving equational reasoning. Thunking
can still be expressed on top of a lazy language, but laziness cannot be expressed
on top of a language with thunks only, without using side-effects.

Method Initialization Order Traditional imperative OO languages often
have a problem with the order of slot initialization. They require slots must
be initialized in a fixed order, usually from most specific mixin to least specific,
or the other way around. But subprototypes may disagree on the order of initial-
ization of their common variables. This leads to awkward initialization protocols
that are (a) inexpressive, forcing developers to make early choices before they
have the right information, and/or (b) verbose, requiring developers to explic-
itly call super constructors in repetitive boilerplate, sometimes passing around
a lot of arguments, sometimes unable to do so. Often, slots end up undefined or
initialized with nulls, with later side-effects to fix them up after the fact; or a
separate cumbersome protocol involves “factories” and “builders” to accumulate
all the initialization data and process it before to initialize a prototype.

By contrast, lazy evaluation enables modular initialization of prototype slots:
Slots are bound to lazy formulas to compute their values, and these formulas
may access other slots as well as inherited values. Each prototype may override
some formulas, and the order of evaluation of slots will be appropriately updated.
Regular inheritance with further prototypes, is thus the regular way to further
specify how to initialize what slots are not yet fully specified yet.

Pure lazy prototypes offer many advantages over effectful eager object ini-
tialization protocols:

– The slot initialization order needs not be the same across an entire prototype
hierarchy: new prototypes can modify or override the order set by previous
prototypes.



– When the order doesn’t require modification, no repetitive boilerplate is
required to follow the previous protocol.

– There are no null values that become ticking bombs at runtime, no unbound
slots that at least explode immediately but are still inflexible.

– There are no side-effects that complicate reasoning, no computation yielding
the wrong value because it uses a slot before it is fully initialized, no hard-
to-reproduce race condition in slot initialization.

– At worst, there is a circular definition, which can always be detected at
runtime if not compile-time, and cause an error to be raised immediately and
deterministically, with useful context information for debugging purposes.

– There is seldom the need for the “builder pattern”, and when builders are
desired they require less code.

If it’s so good... Some may wonder why OO languages don’t use pure lazy
functional programming for OO, if the two are meant for each other.

Well, they do: as we’ll see in section 6, class-based OO is prototype-based
OO at the type-level for type descriptors; and the type-level meta-programming
language with which to define and use those prototypes at compile-time, thus
where OO actually takes place, is invariably pure functional: languages with
static classes have have no provision for modifying a class after it is defined
at compile-time, and disclaim all guarantees if reflection facilities are used to
modify them at runtime. The compile-time languages in which classes are defined
is often quite limited; but a few languages have a powerful such compile-time
language, famously including C++ and its “templates”. Templates support lazy
evaluation with typedef, or, since C++11, with using ... = .... Even when
eagerly evaluated, multiple occurrences of a same type-level template expression
share their computed values, similar to lazy evaluation.

As for prototype OO, while early languages with prototypes, like T or Self,
or later popular ones like JavaScript, were applicative and stateful, we already
discussed in section 3.2.5 how in the last ten years, Jsonnet and Nix have brought
out the happy combination of pure lazy functional programming and prototypes.
We have also been using in production a lazy functional prototype object system
as implemented in a few hundred lines of Gerbil Scheme (Rideau 2020).

Thus, we see that contrary to what many may assume from common his-
torical usage, not only OO does not require the usual imperative programming
paradigm of eager procedures and mutable state — OO is more easily expressed
in a pure lazy functional setting. Indeed, we could argue that OO as such is al-
most never practiced in a mutable setting, but rather as a pure functional static
metaprogramming technique to define algorithms that often use mutation (but
don’t need to).

Of course, it is also possible to embrace imperative style and stateful side-
effects when either using or implementing OO as such. For instance, many Lisp
and Scheme object systems have allowed dynamic redefinition of classes or pro-
totypes and their inheritance hierarchy, while the language Self had mutable
parent slots to specify prototype inheritance, and JavaScript objects have a mu-
table __proto__ slot. Often, mutation makes for much more complex semantics,



with uglier edge cases, or expensive invalidation when the inheritance hierarchy
changes, but faster execution in the common case thanks to various optimiza-
tions. See section 7.1.1.

5.2 Instances Beyond Records

Prototypes for Numeric Functions Looking back at the definitions for
Mixin, fix and mix, we see that they specify nothing about records. Not only
can they be used with arbitrary representations of records, they can also be
used with arbitrary instance types beyond records, thereby allowing the incre-
mental and modular specification of computations of any type, shape or form
whatsoever (Rideau et al. 2021).

For instance, a triangle wave function from real to real could be specified by
combining three prototypes, wherein the first handles 2-periodicity, the second
handles parity, and the third the shape of the function on interval [0,1]:
twf = (_ p q r ÞÑ fix (mix p (mix q r)) _ x ÞÑ K)

(_ self super x ÞÑ if x > 1 then self (x - 2) else super x)
(_ self super x ÞÑ if x < 0 then self (- x) else super x)
(_ self super x ÞÑ x)

The prototypes are reusable and can be combined in other ways: for instance,
by keeping the first and third prototypes, but changing the second prototype to
specify an odd rather than even function (having the then case be - self (-
x) instead of self (- x)), we can change the function from a triangle wave
function to a sawtooth wave function.

Now these real functions are very constraining by their monomorphic type:
every element of incremental specification has to be part of the function. There
cannot be a prototype defining some score as MIDI sequence, another prototype
defining sound fonts, and a third producing sound waves from the previous.
Actually, one could conceivably encode extra information as fragments of the
real function to escape this stricture, but that would be very awkward: For
instance, one could use the image of floating-point NaNs or the indefinite digits
of the image of a special magic number as stores of data. But it’s much simpler
to incrementally define a record, then extract from the record a slot bound to a
numeric function—in, in what can be seen as a use of the “builder pattern”.

Records are thus a better suited target for general-purpose incremental mod-
ular specification, since they allow the indefinite further specification of new
aspects, each involving slots and methods of arbitrary types, that can be inde-
pendently specialized, modified or overridden. Still, the kernel of OO is agnostic
with respect to instance types and can be used with arbitrarily refined types
that may or may not be records, may or may not be functions, and may or may
not generalize or specialize them in interesting ways.

Conflating Records and Functions Many languages solve the above issue by
allowing an instance to be simultaneously both a record and a function. Thus,
prototype definitions can use extra record slots to store ancillary data (such as



MIDI sequence and sound font in the example above), yet simultaneously specify
a the behavior of a function.

Thus, back in 1981, Yale T Scheme (Rees and Adams 1982) was a general-
purpose programming environment with a graphical interface written using a
prototype object system (Adams and Rees 1988). It lived by the dual slogans
that “closures are a poor man’s objects” and “objects are a poor man’s closures”;
its functions could have extra entry points, which provided the basic mechanism
on top of which methods and records were built.

Many later OO languages offer similar functionality, though they build it on
top of OO rather than build OO on top of it: CLOS has funcallable-instance,
C++ lets you override operator (), Java has Functional Interfaces, Scala has
apply methods, JavaScript has the Function prototype, etc. Interestingly, in
Smalltalk, a “function” is just an object that can reply to the message value:,
and an object can similarly be not just a function, but an array, a dictionary,
or a stand-in for any of the “builtin” primitive data types, “just” by defining the
methods that comprise the interface for each data type.

Such functionality does not change the expressiveness of a language, since it is
equivalent to having records everywhere, with a specially named method instead
of direct function calls. Yet, it does improve the ergonomics of the language,
by reducing the number of extra-linguistic concepts, distinctions and syntactic
changes required for all kinds of refactorings. It also opens new ways for pro-
grammers to shoot themselves in the foot, but programmers already have plenty
of them, and these record-function instances don’t make that particularly easier.

Now, to a mathematician, this may mean that those instances aren’t func-
tions strictly speaking, but an implicit product of a record and a function, and
maybe more things. The mathematical notion of “function” isn’t directly repre-
sented in the programming language, only somehow implemented or expressed
in it. Programmers may retort that such is the reality in any programming lan-
guage anyway, and some languages are more honest about it than others, and
won’t let a lie stop them from building more ergonomic features. Mathematicians
might insist that sometimes they really want to represent just a function, with
no other hidden capabilities, and more generally, to maximally restrict what a
program can do, so as more feasibly to reason about it. Programmers may retort
that they still can in such a language, if they insist.

Our purpose is not to repeat the debate whether or not making objects
callable is a good or bad idea, even less to take sides in it—but instead to
notice and make explicit this important and useful notion of implicit product of
several things, whether record, function, or more, whether resolved syntactically
at compile-time (when possible) or dynamically at runtime (otherwise). We will
call this implicit product a conflation.

Freedom of and from Representation We already saw in section 3.3.2 that
were many ways to represent records, that affect performance, memory usage,
the ability to introspect values, etc. There are even more ways to represent them
in conflation with functions, arrays, and more. And a language implementer



may find themselves with an embarrassment of choices for what exact specific
underlying data type to use to represent the instances of their specifications.

However, having neatly separated the core concepts of prototype, inheritance
and instantiation, as tools of incremental specification of software, from any
specific type of instance being specified, we now find we are not only free to
choose the instance type, but also free not to choose: we can keep the concepts
of prototypes, inheritance, etc., as abstract entities that can work on any instance
type a programmer may want to apply them to, instead of only supporting a
single privileged instance type. This makes prototypes a more general and more
modular notion that can be used in multiple ways in a same language ecosystem.

OO without Objects At this point, we may realize we have been explaining
and implementing all key concepts of “Object Orientation” without ever intro-
ducing any notion of object, much less of class.

There are prototypes, and there are instances; but neither is an object. Pro-
totypes are uninstantiated specifications, often incomplete therefore uninstan-
tiable; you can’t call methods on them, or do anything that you can expect to
do on an object. Instances are plain values of any type whatsoever, sometimes
just simple real functions; you can’t combine them with inheritance, or do any
OO-related operation on them. If either is an “object”, then the word “object”
is utterly empty of meaning.

Indeed, we wrote code exactly in this object-less “OO” style to generate
presentation slides for this work (Rideau et al. 2021). We could express without
objects everything that is usually done with objects, but for one caveat discussed
below in section 5.3.2.

Thus maybe “Object Orientation” was always a misnomer, born from the
original confusion of a time before science identified and clarified the relevant
concepts. Maybe the field should be named after Inheritance, or Prototypes,
or Incremental Modularity, and banish the word “Object” forevermore from its
name.

Yet misnamed as OO may be, objects are possible and a useful concept in it.

5.3 Objects: The Power of Conflation

Conflating Prototype and Instance While neither a prototype nor an in-
stance is an object, the conflation of the two, is. This is exactly what objects are
in pure prototype OO languages like Jsonnet and Nix, and a slight simplification
of what they are in stateful prototype OO languages: every object can be seen
as either an instance, when querying the values of its slots, or as a prototype,
when combining it with other objects using inheritance.

Indeed in a pure functional language, without side-effects, there is a unique
instance associated to any prototype, up to observable equality: its fixed-point.
Thus, it always makes sense to consider “the” instance for a prototype, and to
see it as but another aspect of it. Evaluating the fixed-point may or may not
converge, but thanks to lazy evaluation, you don’t have to care about whether



that is the case to refer to the two together, and once computed once the result
can be cached for performance.

If the language has side-effects, there may be multiple distinct instances to
a prototype, and a clone construct will generate a new object from an existing
object, and still keep instance and prototype together. Even in such a language,
a laziness construct can help build a simpler and nicer object system.

Note that these prototype objects correspond to classes at compile-time in
class OO languages, that use the word “object” differently. See section 6.

Keeping Extensibility Modular Specifying software with prototypes yet
without objects works great, as long as it’s clear at all times which entities
are prototypes and which are instances. This is simple enough when the speci-
fication all happens in a single phase, and everything is a big prototype with a
big fixed point operation around it, and plenty of explicit fixed point operations
within, one for every sub-prototype. But what if the specification involves multi-
ple phases, where the “same” entity is sometimes used as an instance, sometimes
as a prototype, what more without it always being used as a prototype before it
is used as an instance? What if some entity, complete and useful in itself, is later
extended by another programmer, overriding parts that the original program-
mer didn’t anticipate would be overridden? What if unextended and extended
variants of it are used in a same program?

The conflation of prototype and instance into an object enables future phas-
ing and extensions without the original programmers having to anticipate how
their code will be used and to factor it accordingly. Programs can be written that
can refer to previous or other programs without having to track and distinguish
which parts are instantiated at which point. No need to decide at every potential
extension point whether and when to either compute a fixed-point or defer its
computation, in what leads to a combinatorial explosion of potential interfaces.
No need to defer everything until the last minute, and make it expensive to use
any intermediary value to make a decision before that last minute, while con-
taminating the entire computation to turn everything into explicit prototypes.
No need to construct and remember access paths or lenses that you’ll have to
use in two different contexts to access both aspects of the “same” object.

In the end, conflation of prototype and instance allows programmers to write
and refer to objects with less mutual coordination with respect to when an
object is being used or extended. By the criteria in section 2, this conflation
indeed makes OOP more modular.

Conflating More Features For mixin inheritance, we wanted a prototypes
to be just a mixin function. For multiple inheritance, we wanted a prototype
to also have a list of direct supers; and for good measure, we wanted to cache
rather than expensively recompute every time the prototype’s precedence list of
transitive supers. Further features can be added by conflating further aspects
into the notion of prototypes.



For instance, we can add a “default values” feature, by conflating an addi-
tional map from slot to value that is only consulted when no override is provided.
Compile-time type restrictions or runtime assertions on slots, slot visibility infor-
mation, debugging information, online documentation, examples and test cases,
generators and minimizers for property-based testing, introspectable method def-
initions, etc., can be added as in the same way: as additional conflated aspects
of a prototype, factors in the prototype as (implicit) product, or equivalently
slots in the prototype seen itself as a record instance.

Distinction and Conflation Conflating many aspects of prototypes, instances
and together objects in an implicit product brings better ergonomics and exten-
sibility. But doing it without having explicit notions of these aspects as distinct
and separate entities leads to a hell of ununderstandably complex semantics as
all the aspects are inextricably weaved together: Conflation without Distinc-
tion is Confusion .

Previous presentations of OO, whether in programming language documen-
tation, teaching materials or academic literature, have largely or wholly omitted
both the implicit conflation of prototypes and instances in objects (for Proto-
type OO) or classes (for Class OO), and the explicit distinction between the two
notions, with indeed much confusion as both cause and consequence. And yet
by necessity those who implement compilers and interpreters by necessity abide
by this conflation.

By insisting on both conflation and distinguish of the two concepts of instance
and prototype, we aim at dispeling the confusion often reigns in even the most
experienced OO practitioners when trying to reason about the fine behavior of
OO programs.

6 Classes

6.1 Class OO as Type-Level Prototype OO

Type Prototypes Having fully elucidated Prototype OO in the previous sec-
tions, including its notion of Object as conflationg of Prototype and Instance,
we can now fully elucidate Class OO including its notion of Class: A Class is
a Prototype for a Type .

Class OO is therefore a special case of Prototype OO, though one where pro-
totype computations only happen at the type-level. The instances incrementally
specified by these prototypes are types—or more precisely type descriptors, usu-
ally available at compile-time only in Class OO languages, in a form of staged
metaprogramming.

Thus when we claimed in section 1.4.1 that the situation of classes in OO
was similar to that of types in FP, we meant it quite literally.

Class OO makes classes Second-Class Now, the language in which these
type prototypes are defined and composed is not the usual “base language” that



the programmer is usually programming in (e.g. C++, Java, C#), but instead
a distinct type-level language in which the types and the base-level functions
operating on them are being incrementally specified.

The type-level language used in a language with Class OO is usually is re-
stricted in expressiveness, in an often deliberate attempt to keep it from being
“Turing-equivalent”. This attempt sometimes succeeds (as in OCaml), but more
often than not utterly fails, as computational power emerges from unforeseen in-
teractions between language features added over time (as in C++, Java, Haskell).

The attempts do usually succeed, however, at making these type-level lan-
guages require a completely different mindset and very roundabout design pat-
terns to do anything useful, a task then reserved for experts.

Computationally powerful or not, the type-level language of a Class OO lan-
guage is almost always very different from the base language: the type-level lan-
guages tend to be pure functional or logic programming languages with pattern-
matching and laziness but without any I/O support, even though the base lan-
guages themselves tend to be eager stateful procedural languages with lots of
I/O support and often without pattern-matching or laziness (or limited ones as
afterthoughts).

In the end, classes are thus not first-class entities in Class OO (subject to
arbitrary programming at runtime), but second-class entities (restricted to lim-
ited compile-time programming), though many languages offer limited reflection
capabilities at runtime. By contrast, classes are first-class entities in Prototype
OO; and indeed, one of the first applications of Prototype OO in any language
is often to build rich runtime type descriptors, that include features not usually
expressible with compile-time type descriptors or their runtime representation
as sometimes accessible through “reflection”, such as extra constraints, context-
dependent I/O, property-based testing support, etc.

More Popular yet Less Fundamental Class OO was historically discovered
(1967) nine years before Prototype OO (1976), and remains overall more popular
in the literature. The most popular OO language, JavaScript, started with Proto-
type OO only (1995), but people were constantly reimplementing classes on top,
and twenty years later classes were added to the language itself (International
2015).

And yet we will argue that Class OO is less fundamental than Prototype
OO: it can indeed be very easily expressed in terms of Prototype OO and imple-
mented on top of it (as exemplified many times over in JavaScript), such that
inheritance among classes is indeed a special case of inheritance among the un-
derlying prototypes, whereas the opposite is not possible: Class OO offers little
to no advantage in implementing Prototype OO over directly implementing it on
top of FP, and it is not universally possible to build Prototype OO such that a
prototype’s inheritance structure is verily the inheritance of an underlying class
(since the former is always first-class but the latter usually second-class).



6.2 Typing Records

Now, a type system with suitable indexed types and subtyping is required to
use rich records. With a less-expressive type system, each use of mixins will be
monomorphic; at the very least, methods will have to be options to support
prototypes that say nothing about them; dynamic typing may have to be reim-
plemented on top of static typing to support more advanced cases; and users
will have to do a lot of wrapping and unwrapping to use mixins, adding a lot
of overhead to the cost of incremental specification. This may explain why us-
ing the above implementation kernel for OO in FP has so far only been found
non-trivial use but in dynamically typed languages.

Record classes were initially identified with record types and subclassing with
subtyping (Hoare 1965). However, the assumption soon proved to be false; many
attempts were made to find designs that made it true or ignored its falsity,
but it was soon enough clear to be an impossible mirage. Without expressive-
enough subtyping, prototypes are still possible, but their types will be very
monomorphic. Users can still use them to store arbitrary data, by awkwardly
emulating dynamic types on top of static types to achieve desired results.

This also makes them hard to type without subtypes.
Type descriptors are themselves often a monomorphic type that does not

require subtyping, at least not unless the type system accommodates dependent
types, or at least staging.

7 BLAH START (RE)WRITING FROM HERE

7.1 FOOOOOOOOOOOO

Mutation The performance optimizations and semantic issues related to mu-
tability in OO.

Also, what the relationship between object systems that allow mutation of
the inheritance DAG (Smalltalk, Self, CLOS) and their pure sematic models?

Inasmuch as mutation is seen as meaning “anything can become anything
else at the drop of a hat”, then the static semantics of everything is essential
trivial; there is total chaos and uncertainty in the mind of the software analyst.
But inasmuch as mutation is seen as meaning “inheritance hierarchies are being
set up before they are used, but don’t change while being used though they
might change before, after and between uses”, with mutation happening at some
notional meta-level or staging area with respect to the inheritance hierarchy,
then the pure semantic model does help describe how the system behaves while
the inheritance hierarchy is being used in a given locally unchanging state.

Now, if a system uses mutation to crucially modify “itself” in general and
its inheritance hierarchy in particular while executing, then indeed the pure
semantic model will prove insufficient to describe the behavior of the system.
A more refined, lower-level model of how mutation of the inheritance hierarchy
interferes with flow control in ongoing operations will become necessary. Yet the
pure system remains a benchmark for how the system does or should behave in
the extents during which the inheritance hierarchy was left undisturbed.



Monotonicity Why Subclassing is rarely Subtyping, and other questions of
monotonicity, (co-, contra- and in-) variance in Functor Mixins and Fixed-Point
Operators.

Typeclasses The relationship between Classes and Typeclasses. How type-
classes make object creation less ad hoc and more modular.

Autowrapping The relationship between Mutable or Immutable objects, linear
typing and subtyping.

Optics The generalization of OO from overriding methods in records to over-
riding arbitrary aspects of arbitrary computations using functional lenses or
zippers, and how this generalization can accommodate advanced OO practices
like method combinations.

Method Combination, Instance Combination Specializing inheritance with
respect to how increments are combined. generalizing precedence lists with DAG
attribute grammars. Metaobject-compatibility.

Global Open Recursion A pure functional solution, already widely used
in practice, yet neglected in the literature, to the problem of “multimethods”,
“friend classes” or “orphan typeclasses”, and the according implications on de-
signing and growing a language.

Multimethods (multiple dispatch) can enable more modular extension, but
require constraints on the definition and use of methods after the fact. In par-
ticular, the ability to add methods retroactively change the shape of the method
DAG, and thus make previous naive manual DAG joins ineffectual; more careful
DAG joins (that explicitly take all directly inherited methods as parameters)
can become tedious and costly to write and run. Automated DAG joins through
reduction to a method monoid via a precedence list make a lot of sense in this
context; no manual joins needed.

Meta-Object Protocols tying together all the bells and whistles in defining
bindings, representations, objects, classes, methods, combinations, etc. We can
adapt and generalize the techniques from AMOP in a pure functional setting.

Runtime Reflection Controlling Meta-Objects, from Synchronous Message-
Passing Proxies to Fully Abstract Asynchronous Containers. We can only briefly
survey this topic, maybe reusing the Collapsing Towers of Interpreters.



8 Conclusion

8.1 Related Work

As far as our bibliographical search goes, all these concepts have been largely
or completely neglected by previous literature trying to provide formal seman-
tics to OO (the kind that can be used for logical reasoning about objects): the
underlying knowledge undoubtedly has existed for a long time, at least among
implementers, yet it remained implicit or ad hoc rather than explicit and sys-
tematic. We are grateful to any reviewer, pre- or post- publication, who can pin-
point previous works that did make these concepts explicit, named them, and
explained the relationship between the human factors and the formal model, and
we will issue according addenda to our bibliography. We also welcome pointers
to more informal literature that may have discussed these concepts without an
attempt at formal semantics, though such works were unlikely to build a bridge
between the two paradigms. In the end, the two paradigms OO and FP are as
complementary as sums and products.

Note how Objects themselves appear only half way through the exposition,
while Classes and Mutability appear even further. These are obviously all es-
sential concepts to fully understand OO, yet they are not as primitive as the
concepts introduced before them in a suitable theory of OO. Indeed, they are
much more elaborate constructions, the semantics of which can be simple, clear
and general when decomposing it into the preceding concepts, but hopelessly
complex, confusing and ad hoc when failing to.

8.2 Parting Words

OO and FP are best friends. My concepts come with constructive implemen-
tations in terms of the _-calculus either normal or applicative or both, pure or
mutable, with or without (sub)types, with or without staging. Any _-capable
language can now be equipped with an Object System à la carte in a few tens
of lines of code, the formal semantics of which can be nicely decomposed in a
few orthogonal concepts. Say “No” to languages with missing or badly designed
Object Systems — use our principled approach to build your own OO above or
underneath them.

We hope that our explanations will convince some FP practitioners that
OO both has sound meaning and practical value, despite many of them having
only seen heaps of inarticulate nonsense in much of the OO literature. OO can be
simply expressed on top of FP, and should be a natural part of the FP ecosystem.

Conversely, we hope that our explanations will convince some OO practition-
ers that OO can be given a simple formal meaning using solid general principles
based on which they can safely reason about their programs, and not just vague
informal principles and arbitrary language-specific rules. FP provides a robust
foundation for OO, and should be a natural part of the OO ecosystem.
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