
Formalizing the Notion of Implementation,

as Illustrated with Concurrent Garbage Collection

François-René Rideau D- ă.ng-Vũ Bân

CNET DTL ASR (France Télécom)
38–40 rue du general Leclerc

92794 Issy Moulineaux Cedex 9, FRANCE
http://fare.tunes.org/

Abstract

We study the notion of implementation in a generic frame-
work for computational semantics. This paper, the first
in a series, gives the detailed formal presentation of a no-
tion of implementation. We introduce the notion pointing
out the issues raised in presence of concurrency, and illus-
trate our ideas with Concurrent Garbage Collection. We
then give a definition for the notion of implementation in a
generic meta-level framework for the semantics of comput-
ing systems. We formalize usual properties expected from
implementations, and particularly find an original notion of
“soundness”. We show how this notion can be used to solve
such problems as modular implementation of synchronized
concurrent systems. We relate this formal notion of sound-
ness to many hacker tricks that were naturally used during
actual implementation of various systems.

1 Introduction

As computing systems get more complex, especially due to
concurrency and distribution, and as they get more used in
mission-critical devices, it becomes increasingly important
to understand how the high-level services they render may
be correctly implemented in terms of low-level software and
hardware.

Formalizing the notion of implementation may help spec-
ify, verify and debug the correct behavior of implementations
(open or not), or of metaprogramming tools that produce
and/or analyze implementations (most notably static or dy-
namic compilers). It is thus of interest to people designing
or developing such metaprogramming tools, and to everyone
wondering how much they can trust the tools they use.

There have been many works on the formal specification
and verification of interpreters and compilers [11, 25, 13, 6].
However, these works are restricted to single-threaded cen-
tralized programming models and do not generalize obvi-
ously to specification of arbitrary parallel or distributed pro-
grams. Araujo [2] discusses correctness of a parallel imple-
mentation of Prolog, but in a setting where he needs not
bother with atomicity, which is precisely the main problem

of concurrent implementations. Lamport has developed no-
tions of atomicity and implementation for concurrent sys-
tems [16, 19], but his single-universe formalism isn’t im-
mediately suitable to specify generic notions of metapro-
gramming or of compiling. Goerigk and Hoffmann [10] give
a formal definition for compiler correctness that is essen-
tially the same as we use, but do not systematically develop
their meta-logic or study additional properties of implemen-
tations.

This paper aims at providing as generic a meta-level
framework as possible to internally express the notion of
an implementation of a higher-level “abstract” computing
system by means of a lower-level “concrete” computing sys-
tem. Yet, we try to provide a framework that allows to ob-
tain in a reusable and composable way results that be useful
to people specifying, implementing, and verifying compilers,
especially in presence of concurrency. We do not use a par-
ticular logical meta-formalism (computerized or not), but
think the presented framework should pose no problem be-
ing expressed in any existing formalism.

In section 2, we informally study the difficulty of speci-
fying concurrent implementations, and examine as a sample
problem the concurrent garbage collected implementation
of a high-level language. In section 3, we propose a generic
notion of implementation, in a generic framework for com-
putational semantics. In section 4, we study various desir-
able properties of implementations, and their composability
we particularly introduce an original notion of “soundness”
that generalizes many stronger ad-hoc notions found in other
works on implementation. In section 5, we show how this
notion is a useful tool to establish in a modular way the cor-
rectness of the implementation of concurrent systems, such
as in the previously considered garbage collector case. We
discuss implementation techniques for soundness. We con-
clude in section 6, suggesting possible applications to the
present work.

2 An Informal Approach

2.1 Specifying Concurrent Implementations

An implementation is a correspondance between two com-
puting systems, one being a higher-level “abstract” com-
puting system and the other being a lower-level “concrete”
computing system. This correspondance ought to preserve
the semantics of the abstract system; this means that com-
putations done with the concrete computing system lead
to observations that are consistent with computations that
would have been done in the abstract system.



Typically, abstract systems of interest are modern high-
level programming languages such as dialects of the LISP
or ML family of languages, or more recently, the Java lan-
guage. Less general cases include programs that are written
in such languages. Concrete systems of interest are modern
microprocessor-based computers, or pools thereof, as pro-
grammed in assembly language. Often, an implementation
is split into layers, factoring the correspondance through in-
termediate computing systems such as virtual machines or
widely available low-level programming languages such as
C.

The semantics of such computing systems and their im-
plementation is very well understood in the single-threaded
case; there have even been proven-correct implementations
of high-level languages with proven-correct microprocessors
[6]. Sequential monoprocessor implementations of sequen-
tial or concurrent languages may be even extracted from
formal specifications of their abstract semantics [?]. That
is, when the implementation is serialized at the low-level,
serial synchronization of concurrent high-level activities is a
marginal benefit.

But formalizing the implementation of a sequential or
concurrent high-level system with a concurrent low-level sys-
tem is still a research topic. Concurrent low-level system can
be a multiprocessor system, a distributed system, or any
computer with multiprogramming operating environment.
The difficulty is that implementating high-level computing
systems involves system services such as automatic mem-
ory management (garbage-collection) checkpointing, persis-
tence, transactions, dynamic compilation, code migration,
support for source-level debugging, and that every such ser-
vice depends on global invariants that must be preserved
despite the concurrency of the low-level system.

A satisfying theory of implementation must thus be ap-
plicable to concurrent computing systems, and include the
study the good properties of an implementation relative to
the preservation of high-level invariants.

2.2 Concurrent Garbage Collection

We’ll try to illustrate the properties we want to study about
implementations using the more specific but typical case of
the implementing garbage collection in concurrent program-
ming language.

Garbage collection [5, 28], or “GC”, is a technique used
for automatic memory management when implementing
typed high-level languages whose programming model in-
volves a dynamically evolving graph of objects. It consists
in having a special system activity, named the garbage col-
lector or also “GC”, track down objects in the graph that
are “dead”, that is, unreachable from any currently user-
accessible object, and collect them, that is, eliminate them
from the graph, saving representation space for future new
objects.

Eliminating dead objects is a safe transformation of pro-
gram state in as much as it preserves the semantics of the
language: that is, it allows no abstract user observation that
would distinguish the transformed program from the origi-
nal one. A garbage collector needs not eliminate all unreach-
able objects; if actual computations run concurrently with
the garbage collector, determining the exact set of objects
that are reachable at a given moment would require stopping
all other activities for the duration of the GC, which can be
more expensive than is worth. So garbage collectors, concur-
rent or not, may have various degree of “conservativeness”

whereby they eliminate sets of objects that are smaller than
the set of unreachable objects. On the other hand they may
not collect any reachable object; that would be unsafe, and
would likely lead to horrible death of implemented programs
when they try to access an object that has been collected.

Garbage collection is a relatively high-level transforma-
tion on object graphs; however, computer memory hardware
typically doesn’t provide dynamically reconfigurable graphs
as such, but statically configured arrays of dynamic data
cells according to the Von Neumann architecture. Object
graphs may be represented by mapping every node of the
graph to chunks of consecutive data cells in memory, and
with arcs of the graph being represented as a number in
corresponding data cell of the father node, pointing to the
first data cell of the son node. A same object graph may
have multiple representations as a memory state, depending
on the mapping of graph nodes to memory chunks; a GC
may safely modify the mapping as long as it preserves the
graph. A same object graph may also lack any representa-
tion as a memory state, if it contains more nodes that can
be fit into the finite memory size. On the other hand, not all
memory states are valid graph representation; the encoding
of graphs may rely on complex invariants to be respected
by well-formed memory states so that GC may happen. For
instance, many GC techniques require that the GC algo-
rithm should be able to precisely differentiate pointers from
other numbers, so that it may update, swizzle, marshall, or
otherwise specially process pointers when moving, mapping,
or migrating objects around the implementation-controlled
world. Lastly, a given memory state must represent only
one valid object graph, or else we would be unable to use
the concrete computations to unambiguously implement the
abstract computations. The correspondance between ab-
straction and concrete computation states is thus a partial
one-to-many relation in the general case, although in some
cases, it might be useful to have the implementation be total,
or to refine its exact behavior until it be one-to-one.

Now, GCs are not usually run alone for the sake of it;
rather, they run as a system support service, concurrently
with actual implementation of the abstract activities that
modify the graph, “mutators”. And for architectural rea-
sons, it may be plainly impossible, or extremely inefficient
for the underlying computing architecture to preserve the
GC invariants at all moments; so that mutator operations
that are conceptually atomic when manipulating abstract
graphs may involve many instructions when concretely im-
plemented. The concurrent mutators may introduce lots of
transient states, that do not correspond to any valid ab-
stract graph representation; but the GC activity must only
be able to observe the mutated memory when it is in a “sta-
ble” state that respects invariants. We say that the mutator
implementation is sound if it is always possible for the GC
to observe it in a stable state when needed. Soundness thus
appears as an essential property of implementations so as to
safely combine multiple concurrent activities.

We may also study more classical properties of garbage
collected implementations of high-level languages. A GC’ed
implementation will be complete, if it enables the represen-
tation of all possible object graphs that may happen as valid
states during the abstract computation; this is only possible
if we can give a bound on the total amount of live nodes at
any moment in the computation state, so that they may all
be encoded within the finite amount of available concrete
memory. A GC’ed implementation will be live if it never
stops or hangs, if progress of concrete computations corre-

2



spond to observable progress of abstract computations; this
means that GC activity will always give the hand back to
mutator activities after a (hopefully short) while. A GC’ed
implementation will be real-time if there can be a bound
on the “while” involved in making abstract computations
progress; in presence of concurrent activities, this affects
not only liveness of the implementation, but also soundness,
since the mutator activities must “stabilize” fast enough so
that the GC can do its job and yield back execution to other
mutators fast enough.

Without going into the details of garbage collection, we
have already isolated properties that we require from im-
plementation of garbage-collected languages. There now re-
mains to formalize this intuition.

3 A Simple Model for Implementation

3.1 Modelling Computing Systems

Before we can express the notion of implementing a comput-
ing system with another, we must first formalize the notion
of a computing system. By “computing systems”, we mean
just anything, from the most universal computing system
(such as a full-fledged installation of GNU/Linux) down to
the most special-purpose finite device (that may itself be
given by a description within a universal system). Turing-
machines (universal or not) or variants of λ- or π- calculi
1 are eligible, as are systems constituted by the states of
execution of general- or special-purpose programming lan-
guages, or by just the reachable states of execution of a given
program in some language.

We’ll choose the simplest model we can think of that has
some characteristic significant structure, so as to get the
intuition of what we mean without having to overcome too
many details. We feel that the essence of computation is
that an operator sets some initial state in a system, and lets
the system evolve in a sequence of state transitions; at times,
the operator will observe the current state of computations,
so as to see possible progress or success of the system.

To formalize such a model, we will consider what set the-
orists call a preorder: a set with a internal binary relation
≤ that is both reflexive and transitive. ≤ is sometimes ob-
tained as the reflexive transitive closure −→∗ of a “step”
relation −→; however, it needs not be, and it is often con-
fusing to try to express everything in terms of atomic steps.

Model theorists who think in terms of stateful abstract
machines will like to understand an element of the set as a
possible state of the machine, and of the (step) relation as
one of (atomic) transition from one state to another. The
elements that are ≤ to a given state constitute the possible
future states into which it may naturally evolve. The com-
puting system can thus be viewed as a transition system.

Logicians may rather consider the states as states of rel-
evant knowledge about the system [12], and the relation as
a monotonous refinement or non-monotonous evolution of
this knowledge. The elements that are ≤ to a given state
are possible future states of knowledge about the system in
presence of internal though process only. The computing
system can thus be viewed as a logical reasoning system.

Semanticians who study programming languages, will
like to understand an element of the set as the expression

1 There must be some relation between the notion of implemen-
tation and that of (bi)simulation, as known in asynchronous process
calculi, but cannot say which at the time being.

that constitute a program in context, and of the (step) re-
lation as one of (atomic) reduction from one expression to
another. The elements that are ≤ to a given expression are
refined expressions into which it may be rewritten, that have
more specialized denotational semantics than the considered
expression. The computing system can thus be viewed as a
term rewrite system.

Finally, category theorists [20] will consider a preorder
as just a category whose objects are the elements of the
set, and whose arrows are couples of objects that satisfy
the binary relation (i.e. a category where you decide not to
distinguish arrows that have same domain and codomain).
The objects of the category are the semantic interpretations
of the programs of a language, endowed with a preorder
structure.

This same model seems to be a common root to most
widely-used formal frameworks for defining and analyzing
the semantics of computing systems: denotational seman-
tics, operational semantics, rewrite logic, abstract state ma-
chines. It may thus be used to model implementations of a
system whose semantics is described in one of these frame-
works with another lower-level system whose semantics is
described in another of these frameworks. Note that this
model conspicuously takes into account only internal be-
havior of computing systems, the spontaneous intrinsic re-
lations, transitions, reductions or morphisms that exist be-
tween elements, states, expressions or objects of the system.
This model could be extended with more structure, but this
is not essential to the current study.

In the rest of this paper, we will indifferently use the
vocabulary of a set theorist, a model theorist, a logician, a
semantician, a category theorist, in an attempt to raise uni-
versal mutual understanding. In diagrams, we’ll also draw

x
∗

x′

the fact that x ≤ x′ and

x
+

x′

the fact that x ≤ x′ and x 6= x′. Assuming that ≤ is indeed
defined from a step relation −→, we’ll also draw

x x′

the fact that x is rewritten in x′ in one step.

3.2 Implementation

Informally, we want an implementation to be a correspon-
dance between two computing systems, an “abstract” sys-
tem A and a “concrete” system C, whereby states in a (hope-
fully large enough) fragment of A are each “implemented” by
a choice of one or more states in C. Implementation means
that an implementing concrete state should somehow have
the “same” observable behavior as the implemented abstract
state, although it may do as it pleases when abstract behav-
ior is only partially specified. An implementation may be
partial: sometimes, not all of the abstract system is im-
plemented (particularly if said abstract system is infinite,
while the concrete system is finite); we will be satisfied with
a fragment of the abstract system that be big enough to
successfully complete considered computations.

To formalize the notion, consider systems A and C en-
dowed with preorders as above. An implementation will be

3



some kind of partially-defined non-deterministic but injec-
tive function from A to C; its inverse function, a partial
deterministic function from C to A will be a “partial inter-
pretation” of C in A.

Partial and non-deterministic functions have not been as
widely used for formal reasoning as have been their total de-
terministic counterparts, but have nonetheless been studied
and formalized in logical, mathematical or computational
frameworks [8, 22, 27]. Set theorists might just consider
them as just binary relations; applicative functional pro-
grammers may take them as a primitive concept; but cate-
gory theorists as well as many people will prefer to express
them in terms of total deterministic functions.

A partial function f from a set X to a set Y can be easily
macro-expressed from within common frameworks of total
deterministic functions, as the data of an intermediate set
Z of individual associations, and two (total deterministic)
functions anf : Z → X and imf : Z → Y respectively giving
the antecedent and image of every individual association.
Thus, y is a possible value of f(x), which we write y ✁

f(x), iff there is a z such that anf(z) = x and imf(z) = y.
f is deterministic iff anf is injective; it is total iff anf is
surjective; it is surjective iff imf is surjective; it is injective
iff imf is injective. In particular f is total deterministic iff
anf is bijective.

To stay within a framework of total deterministic func-
tions, we’ll thus have an implementation be the data of an
intermediate set O of “observable abstract states” (or equiv-
alently of “stable concrete states”), with an injection j from
O into C (equivalently, we will consider O as a subset of
C), and a function φ from O to A. We can then say that a
concrete state c is stable and corresponds to observable ab-

stract state a iff a
φ

o
j

c which we’ll also write

more simply as a c
Φ . We will use the following dia-

gram

A C
Φ

to denote the fact that Φ−1 = j ◦φ−1 be an implementation
of A with C. Note that we privilege the inverse Φ = φ ◦ j−1

of the implementation Φ−1; in fact, as we’ll see later, it is
the “interpretation” Φ, not the implementation Φ−1, that
preserves structure and deserves to be an arrow.

There remains to give a computing system (preorder)
structure on O. Since O is conceptually a subset of C
(through embedding j), we may quite naturally define ≤ in
O such that o ≤ o′ in O iff j(o) ≤ j(o′) in C. Set theorists
say that we consider on O the preorder structure induced
by C, or the reciprocal image through j of C’s structure.
Category theorists say that O is a full subcategory of C, or
that j is an embedding of O in C.

To sum up, when we have such a partial function Φ =
φ ◦ j−1 with φ : O −→ A and j : O →֒ C, then we say that
Φ−1 is an implementation of A with C through O.

4 Properties of an Implementation

Now that we have laid out the basic framework for study-
ing the notion of an implementation, we can formalize good
properties that we expect from an implementation so it be
considered useful. Of course, depending on our (informal)
intent for a given implementation, we’ll require a different
set of properties to be fulfilled by this implementation. In

the rest of this section, we’ll consider as defined above an im-
plementation Φ−1 of an abstract computing system A with a
concrete system C through the intermediate system O, given
by the canonical injection j : O →֒ C, and an interpretation
function φ : O −→ A.

4.1 Safety

The most essential property, that we will require from just
every implementation so it be considered correct, is that of
safety: any observable result that be yielded by concrete
evaluation must correspond to a valid abstract result that
could legally have been obtained by evaluation in the ab-
stract system.

Formally, for any diagram

a a′

c
C

∗

Φ

c′

Φ

we must be able to complete the diagram into

a
A

∗
a′

c

Φ

C

∗
c′

Φ

That is, if by computing from an implementation c of a, we
can observe an (intermediate or final) concrete state c′ that
can be interpretable as abstract state a′, then a′ must be
a correct result that could have been found by doing com-
putations purely within the abstract system. Any abstract
observation made by observing and interpreting the concrete
system must be valid in the abstract system.

In other words, the basic reduction structure of the com-
puting systems must be preserved by φ. Set theorists will
say that φ is a non-decreasing function; category theorists
will say that φ is a (covariant) functor2. Note that by the
very construction of the structure on O as induced from C,
it is given that j be structure-preserving.

Safety is a composable property: if Φ−1 is a safe imple-
mentation of A with C, and Ψ−1 is a safe implementation
of C with D, then Ψ−1 ◦Φ−1 is a safe implementation of A
with D.

To illustrate the difference between safe and unsafe, con-
sider computations on natural numbers, where the states we
observe are those when the system yields results. An imple-
mentation with fixed-precision integers will be safe if it traps
on overflow; any result it will yield will be correct. An im-
plementation with fixed-precision integers that silent wraps
computations that overflow is not safe, and may yield wrong
results when initial conditions imply too large numbers dur-
ing computation. Note that safety does not mandate termi-
nation. It only mandates that in case of termination or legal

2 Let us remark the fact that structure preservation happens in
a way contravariant to that of Φ−1: the “interpretation function” φ

that preserves structure goes in a direction opposite to that of the
implementation Φ−1. In categorical words, the theory of implemen-
tation is inherently decompositional, rather than compositional. We
may argue that it explains the utter failure of so many attempts to
build compositional meta-objects framework. This justifies our priv-
ileging Φ as the object of logical interest.

4



observation, the implementation yield a correct result. It is
always safe to not answer; of course, answers are desirable
when possible, but misleading incorrect answers are worse
than no answer. When designing mission-critical systems, it
is safe not to come with a design, but unsafe to come with
a design that might erroneously kill people under intended
use conditions.

This notion of safety is the same as found in works by
Lamport [17]. It is what Goerigk calls partial correctness [9],
“partial” corresponding to the fact that Φ be a partial func-
tion rather than a total function.

Since safety is such an essential property, from now on,
we’ll only consider safe implementations. Besides, the cat-
egorical formalism we chose to be equally used as others
demands structure-preservation from every considered func-
tion, anyway.

4.2 Soundness

Another important property of implementations is that of
soundness: an implementation is sound iff any possible con-
crete transition path is somehow “meaningful”, and corre-
sponds to part of an abstract transition path3.

This can be formalized by requiring that any diagram

a

c
C

∗

Φ

c′

may be completed into a diagram

a
A

∗
a′′

c
C

∗

Φ

c′

C

∗
c′′

Φ

That is, if concrete computations starting from a stable state
c have led to intermediate state c′, then they must lead from
c′ to a further stable state c′′.

In other words, the concrete system mustn’t have mean-
ingless transitions, whereby it spontaneously go wild or enter
a deadlock; instead, starting from a stable state, it must al-
ways keep the possibility of evolving into a stable state, of
“stabilizing”.

Soundness as such is not a composable property, since
given sound implementations Φ−1 of A with C and Ψ−1 of
C with E, we cannot know for sure without an additional
hypothesis that the observable state in C that we obtain
from invoking the soundness of Ψ−1 is itself a stable state
with respect to Φ−1. However, there are several ways to
obtain some degree of composability for soundness results,
by invoking additional properties. For instance, composition
of a sound implementation of A with C with a sound and
complete implementation of C with E (see below). Also, if

3 It so happens that logicians tend to call “soundness” the prop-
erty that we above called “safety” [13]. To avoid confusion, it might
be better to use another name for the present property. The name
“metastability”, albeit long and hard-sounding, has been proposed,
since the property ensures that an external monitoring “meta-object”
may stabilize the state of the system so that concurrent internal ac-
tivities will only make safe observations; We are not otherwise aware
of this property having been given a name before.

Φ−1 is an implementation of A with C through O, and Ψ−1

is a sound implementation of C with E such that all image
values of Ψ in C are also in O, then Ψ−1 ◦ Φ−1 is sound.

Variant: We can have various notions of “real-time”
and/or bounded-resource soundness, assuming we have a
notion of “duration” or “size” of transition paths between
two states, by requiring that can be exhibited transition
path from c′ to c′′ be of duration or size less than some
maximum admissible response time or more generally than
some maximum pre-allocated amount of resources.

4.3 Completeness

An interesting property that we may require from an imple-
mentation, is that of completeness, whereby all transitions
from a given implemented abstract state are themselves im-
plemented.

Formally, from diagram

a
A

∗
a′

c

Φ

deduce diagram

a
A

∗
a′

c

Φ

C

∗
c′

Φ

Note that we do not require every abstract state to be
implemented, which is a property that we call totality (from

a deduce a c
Φ

). An implementation that has both

completeness and totality will be said to be faithful. Com-
pleteness and totality are composable properties. Complete-
ness and soundness combined yield a composable property,
too. If we look at temporal logic statements on transitions,
completeness ensures preservation of increasing “may” state-
ments by Φ.

Variant: Sometimes, we don’t require that all possible
transitions be implemented, but only that there be at least
one implemented transition whenever there is a transition
possible from a given observable abstract state. Formally,
from same diagram as for completeness above, deduce dia-
gram

a
A

∗
a′′

c

Φ

C

∗
c′′

Φ

with a′′ not a priori related to a′. We call this property
advance-preservation. Advance-preservation is not compos-
able.

4.4 Liveness

A useful property to require from an implementation is that
of liveness: any concrete evaluation must spontaneously ad-

5



vance. Formally, given a diagram

a

c0
C

+
Φ

c1
C

+
c2

C

+
...

C

+
cn

C

+
...

with c0 . . . cn . . . an infinite sequence of strict transitions in
C we deduce

a
A

+
a′

c0

Φ

C

+
c′

C

∗

Φ

ck

That is, there is an integer k such that abstract computation
has strictly advanced before concrete computation reaches
k-th transition.

Liveness is a composable property. If we look at temporal
logic statements on transitions, liveness ensures preservation
of increasing “must” statements by Φ.

Variant: For “real-time” or otherwise bounded re-
source variants of liveness, we strengthen the property by
weakening the hypothesis that the sequence (cn) be infi-
nite, and introducing instead some weaker criterion of be-
ing “long enough” for sequence (cn) (for instance being of
length greater than N , for a given integer N). Such vari-
ants may compose or not, depending on expected criteria on
the length of transition paths for the implementations being
composed and for their result.

Variant: With strong liveness, we consider individual
steps instead of just strict transition, and we demand that
c′ = ck. Hence, from

a

c0

Φ

C
c1

C
c2

C
...

C
cn

C
...

with c0 . . . cn . . . an infinite sequence of steps in C, we deduce

a
A

+
a′

c0

Φ

C

+
ck

Φ

Strong liveness combines both weak liveness and sound-
ness simultaneously in the same property, and is compos-
able, all of which make it a very pleasing property. It is
a useful property for a single-threaded monoprocessor im-
plementation of a computing system, and allows for design
of straightforward such implementations. However, it is
so strong that it costs too much to achieve in a concur-
rent or distributed implementation, since it requires sponta-
neous and simultaneously synchronization of all the concur-
rent or distributed processes. Strong liveness like the previ-
ous, “weak”, liveness, has “real-time” and bounded-resource
variants, with similar remarks as in the above cases.

An even stronger (and still composable) variant, strong
step preservation has same hypotheses as strong liveness,

but requires in its conclusion that

a
A

a′

instead of merely that

a
A

+
a′

which means that you can retrieve individual abstract steps
of computation from a concrete trace of execution; i.e. stable
states are never optimized away as could otherwise be done.

5 Synchronizing Concurrent Implementations

5.1 Concurrent Implementations

A concurrent computation system is a system made of
mostly independent components. Most of the time, compo-
nents behave like independent computing systems of their
own, with local transitions that do not affect other compo-
nents, and may happen in parallel. Sometimes, the compo-
nents interact with each other, and the global system state
is modified in a non-local synchronized way.

To formalize that, consider a system S such that the set
of states of S is the product Πi∈ISi of the set of states of var-
ious subsystems (Si)i∈I . Each subsystem Si is called a com-
ponent of the system, and the each projection pi : S −→ Si

is called a partial view on the system. Each Si is also en-
dowed with a “local” computational structure −→Si

. The
global system S has a computational structure −→ such that
the product structure Πi∈I −→Si

is fully included in the
structure −→; that is, any tuple (ti)i∈I of (possibly null)
local transitions is a valid global transition, so that local
transitions may happen “in parallel”. S may also have ad-
ditional “synchronized” transitions, that are no products of
local transitions, and represent coherent communication or
interaction between two or more components of S4.

A concurrent implementation is simply an implementa-
tion the concrete system of which is a concurrent system.
When implementing a concurrent abstract system with a
concurrent concrete system we often want to establish a
correspondance between components of the concrete system
and components of the abstract system. This can be for-
malized as having partial views of each system that make

4 Note that with the above definition, just any system could be
considered concurrent by butchering it into components, trying to de-
fine proper sets of local transitions, and falling back to having only
null transitions on every component, with every transition not ex-
pressed as a product of local transitions being considered a “synchro-
nized” transition. Concurrency is not an intrinsic property of a com-
puting system, but a property of its formalization; a same computing
system may have several distinct concurrent or sequential formaliza-
tions, whose interest depend on the problem the user is trying to solve
when studying the system. For instance, in the case of GC as consid-
ered before, most monoprocessor GC’ed implementations statically
interleave GC with mutator threads at allocation points; there is no
explicit GC thread visible from the system thread scheduler, only a
special system mode for GC; conceptually though, we can still con-
sider GC to happen as a concurrent service, one important enough
that it has a specific scheduler, optimized for cheap synchronization
and inlined around the whole program. As says Lamport, processes
are in the eye of the beholder [18].

6



the following diagram commute:

A
pA′

A′

C

Φ
pC′

C′

Φ′

Note that the concrete system will typically have more com-
ponents than the abstract system, with additional compo-
nents representing system services such as message-passing
kernels, schedulers, garbage collectors, etc.

Assuming we know how to separately implement each of
the components of a given abstract system (as considered
with its local structure), as well as how to implement the
“synchronized” transitions (possibly in a sequential way),
the question is how to achieve a “reasonably concurrent”
implementation of the whole system, that would allow lo-
cal transitions to happen concurrently while still performing
global synchronized transitions. That is, we want a tech-
nique to correctly combine concurrent implementations.

5.2 Soundness as a Synchronization Primitive

The solution we formalize is to require each component’s im-
plementation to be not just safe but also sound (and possibly
complete, live, etc), and to use one or several additional sys-
tem components to monitor synchronization of “user” com-
ponents. Actually, this solution is being used universally, in
a large variety of special cases.

Consider an abstract system A with components Ai, such
that we have a safe and sound implementation of each Ai

with Ci. Then we can construct a safe and sound imple-
mentation C of A with “user” components C′

i and “system”
components Cs, defined as follows: the states of C′

i are the
product of those of Ci with the state space of additional
control flags and data that will be shared with the monitor
and mostly controlled by the monitor, but accessible to no
other C′

j . When control flags indicate C′

i is running, then
C′

i has local transitions corresponding to each of Ci’s tran-
sitions. When control flags indicate C′

i must stop, it will
by soundness converge to a stable state, set a control flag
indicating stability, and stop (i.e. have no more transition).
When a synchronized transition is to happen, because a user
component wants to communicate, or because some system
service (clock, GC, I/O driver, etc) triggers one, the mon-
itor will set “stop” flags on all relevant components, wait
for their all being stabilized, and execute a sequential im-
plementation of the abstract synchronized transitions from
stable abstract component states; it may reactivate the com-
ponents when done, or begin another abstract synchronized
transition.

Particular instances of this technique have been in use
for decades, and informally constitute the very core of op-
erating system and language implementation design. Op-
erating systems for time-sharing systems are thus typically
implemented with a “kernel” serves the role of monitor for
the implementation of a collection of “user processes” and
“system services” that constitute the abstract computing
system. Note that the monitor may itself be split into con-
current components, each corresponding to special kinds of
synchronized transitions that may be implemented without
global synchronization; this is all the truer since the con-
current system can be distributed rather than centralized.
On the other hand, as with GC, part of the monitor may

be optimized and inlined all around “user” code to achieve
better efficiency, rather than having a kernel. Finding an
optimized version of a monitor for the implementation of a
given abstract system with a given concrete system is left as
an exercise to the reader.

The above implementation technique thus allows to mo-
dularly achieve a safe and sound concurrent implementation
of a concurrent system from safe and sound implementations
of each of its components, as combined with a suitable mon-
itor; the monitor ensures that interactions between concur-
rent activities may only happen when all relevant activities
are synchronously in a suitably stable state. What remains
to be acknowledged about it is that the key to this modular
design is in the notions of stable states and of sound imple-
mentation. And the key has to match the lock: the latter
notion depends on the former, and the former depends di-
rectly on the abstract system being implemented, its concur-
rency and atomicity model; when implementing a different
application, the abstract system changes, and so does the
notion of stable state, so does the concurrency and atomic-
ity model. This means that a monitor for a given low-level
notion of stability isn’t immediately suitable as a monitor for
a higher-level notion of stability that would have additional
invariants; given such a notion, it requires the rework of a
complete new layer of a monitor and of wrappers around user
processes so as to implement the abstract system, and then,
wrapped user processes cannot interact seamlessly with un-
wrapped user processes. This gives a theoretical account of
the abstraction gap that prevents seamless mixing of com-
ponents written in high-level languages such as Java with
components written in low-level languages such as C, least
the low-level component follows stringent conventions such
as JNI.

All in all, it appears that it is useful to define several
notions of state stability, depending on the kind of synchro-
nization needed, on the invariants that the system is able to
express. Unability for a high-level programming language
to directly express the user application’s arbitrary invari-
ants leads to expensive cost in terms or program complexity
and inefficiency due to abstraction inversions [3] involved in
reimplementing the application’s conceptually low-level in-
variants in terms of the programming language’s high-level
primitives.

Use of various mechanisms to achieve transparent preser-
vation by the system of a non-trivial notion of stability can
be traced back at least to ITS [7], in the late 1960’s, with
its PCLSRing feature [4], whereby interrupted system calls
would always leave a process in valid user mode state. “Re-
flective” systems attempt to provide a way for the program-
mer to define monitors within his usual application program-
ming language, using “metaobjects” that run concurrently
with normal objects and are able to control them [21, 14].
However, the only language we know that allows the pro-
grammer to directly define his own notion of stability is
C--, with its notion of safe-points, and with soundness be-
ing specified in terms of an ExecuteToNextSafePoint prim-
itive [24]. Not surprisingly, the need for such notion was a
direct consequence of designing the C-- language as a generic
portable back-end to arbitrary high-level languages, each
with its own abstract notion of stable state. Our study sug-
gests that all languages, even high-level languages, should
have the capability of defining one or several notions of sta-
ble states, for they are always used to implement applica-
tions that are higher-level computing systems than they are.

7



5.3 Techniques to Achieve Soundness

We have formalized soundness and seen how to use it, but
haven’t yet explained how it could be implemented. Herein,
we’ll try to give a general view of well-known techniques
that have already been used in the past to achieve soundness
whenever it has been needed. Mosberger et al. [23] propose
use of various stabilization techniques for achieving atomic
operations in presence of interrupts.

The general idea behind implementing soundness is that
the state of an interrupted process to be stabilized must be
rolled back or rolled forward to some previous or next sta-
ble state. Roll-back is implemented by making reversible
all operations effected since last stable state, which may
mean storing all modified components of the stable state,
or logging reversal information for every modification. It
isn’t always possible to roll-back, since some operations are
intrinsically irreversible; for instance, you can’t usually un-
print data that was sent to a line-printer. Roll-forward is
typically implemented by reentering the interrupted activ-
ity in a special mode that will stop at next safe point. Safe
points may detect the necessity of stopping by polling a par-
ticular system flag, by releasing and reacquiring locks at the
end of atomic blocks, which are ways to manually achieve
strong liveness as previously suggested. A more complicated
but more efficient efficient technique is to temporarily mod-
ify user code so its jump out into the monitor instead of
continueing execution; Ogesen used such technique for GC
in the EVM implementation of Java [1].

Now, whatever nifty mechanisms the system uses to
achieve soundness with respect to its own invariants, lack of
user-accessibility of such mechanisms forces the user to pay
a high cost when enforcing the high-level invariants he cares
about. In absence of efficient system support for soundness
with respect to user-defined invariants, the user must indeed
fall back to the extremely costly methods of manually ac-
quiring locks or polling, or invest in unportable reimplemen-
tation of system mechanisms. User definability of varieties
of stability invariants and corresponding safe points can thus
be viewed as a declarative dual to manually acquiring and
releasing locks around critical sections; like all declarative
approaches, it requires an additional bit of support from
metaprogramming tools (compilers), but in exchange allows
the latter to do all kinds of system-dependent optimizations
that the programmer couldn’t otherwise achieve in a way at
the same time a simple, portable, and efficient.

6 Conclusion

We have defined a generic notion of implementation, appli-
cable to a wide variety of existing systems and formalisms.
We have formalized various desirable properties of imple-
mentations, and identified one, soundness, that we think
lacked deserved recognition. We have shown how to use our
formalized concept of soundness to achieve concurrent im-
plementations of concurrent systems in a modular way. We
have stressed the fact that at the center of all the proper-
ties we studied lies the intrinsically application-dependent
notion of a stable system state. We have accordingly sug-
gested that language design should include an explicit user-
definable notion of stable system state.

We think that the above contribution is of interest to
language designers as well as to people trying to formally
establish the correctness of program implementations and
of implementing metaprograms.

This formal notion of implementation could be used to
specify failsafe implementations, by considering various “en-
richments” of the concrete system of an implementation with
additional state transitions for every kind of failure, and
studying properties that are preserved in presence of fail-
ures (in increasing order of preference, liveness, soundness,
safety).

A further research area we intend to explore, is to use
this formal notion of an implementation, together with a for-
mal notion of metaprogramming [26] to better understand
and specify the semantics of reflective systems. Reflective
systems are an attempt to allow direct expression (as op-
posed to mere manual implementation) of user-defined do-
main specific languages, by dynamically interning an im-
plementation of these languages; formalizing the notion of
implementation is thus necessary to specify the correctness
of reflective programs.

We may even try to deduce “meta-object protocols” from
the above-mentionned formalized logical properties: stabi-
lization primitives can be considered a computational coun-
terpart to the logical property of soundness, and we may try
to similarly find computational counterparts to other logical
properties.

A related research topic is Aspect Oriented Program-
ming [15], whereby a program is defined by multiple dis-
tinct aspects that an implementation of the program should
simultaneously implemenent. For instance, from our analy-
sis of the notion of implementation, we may interpret cross-
cutting problems in AOP as the expression of implementa-
tion being a decompositional notion rather than a compo-
sitional one. A particular class of systems that must thus
simultaneously implement multiple aspects are systems de-
scribed with the ODP models, used in the industry and
telecommunications.

References

[1] Ole Agesen. GC Points in a Threaded Environment.
Technical report, Sun Microsystems, 1998. http://
www.sunlabs.com/research/java-topics/.

[2] Lourdes Araujo. Correctness proof of a Distributed
Implementation of Prolog by means of Abstract State
Machines. Journal of Universal Computer Science,
3(5):416–442, 1997. http://www.eecs.umich.edu/
gasm/verif.html.

[3] Henry G. Baker. Critique of DIN Kernel Lisp Definition
Version 1.2. Lisp and Symbolic Computation, 4, 4:371–
398, March 1992.

[4] Alan Bawden. PCLSRing: Keeping Process State Mod-
ular. Technical report, MIT, 1989. http://fare.
tunes.org/tmp/emergent/pclsr.htm.

[5] David Chase and al. Garbage Collection FAQ, 1996.
http://www.iecc.com/gclist/GC-faq.html.

[6] Paul Curzon. A verified Vista implementation. Tech-
nical Report 311, University of Cambridge, Computer
Laboratory, September 1993. http://www.cl.cam.ac.
uk/users/pc/fintr93.html.

[7] D. Eastlake, R. Greenblatt, J. Holloway, T. Knight, and
S. Nelson. ITS 1.5 Reference Manual. Memo 161a, MIT
AI Lab, July 1969.

8



[8] Solomon Feferman. Definedness. Erkenntnis, 43:295–
320, 1995. http://math.stanford.edu/~feferman/.

[9] Wolfgang Goerigk. On the Correctness of Compilers
and Compiler Implementations. Technical report, 1995.
http://i44s11.info.uni-karlsruhe.de/~verifix/.

[10] Wolfgang Goerigk and Ulrich Hoffmann. Rigorous com-
piler implementation correctness: How to prove the real
thing correct. In Proc. FMTrends’98. Springer, 1998.
http://i44s11.info.uni-karlsruhe.de/~verifix/.

[11] Joshua D. Guttman and Mitchell Wand, editors.
VLISP: A Verified Implementation of Scheme. Kluwer,
Boston, 1995. Originally published as a special dou-
ble issue of the journal Lisp and Symbolic Computation
(Volume 8, Issue 1/2). ftp://ftp.ccs.neu.edu/pub/
people/wand/vlisp/lasc/.

[12] J. Y. Halpern, R. Fagin, Y. Moses, and M. Y Vardi.
Reasoning About Knowledge. MIT Press, 1995.

[13] John Hannan and Frank Pfenning. Compiler verifi-
cation in LF. In Proceedings, Seventh Annual IEEE
Symposium on Logic in Computer Science, pages 407–
418, Santa Cruz, California, 22–25 June 1992. IEEE
Computer Society Press. http://www.cs.cmu.edu/

~fp/papers/.

[14] R. Kaer and Th. Mahler. Introducing and Model-
ing Polycontextural Logics. Technical report, Insti-
tut für Kybernetik und Systemtheorie, 1998. http:
//www.techno.net/pcl/tm/plisp/.

[15] Gregor Kiczales, John Lamping, Anurag Mendhekar,
Chris Maeda, Cristina Videira Lopes, Jean-Marc Lo-
ingtier, and John Irwin. Aspect-Oriented Program-
ming. In proceedings of the European Conference on
Object-Oriented Programming (ECOOP), number 1241
in LNCS. Springer-Verlag, June 1997. http://www.
parc.xerox.com/spl/projects/aop/.

[16] Leslie Lamport. On Interprocess Communi-
cation. Distributed Computing, 1(2):77–101,
1986. http://gatekeeper.dec.com/pub/DEC/SRC/
research-reports/abstracts/src-rr-008.html.

[17] Leslie Lamport. A Simple Approach to Specifying
Concurrent Systems. Technical Report SRC-015, Digi-
tal, 1988. http://gatekeeper.dec.com/pub/DEC/SRC/
research-reports/abstracts/src-rr-015.html.

[18] Leslie Lamport. Processes are in the Eye of the Be-
holder. Technical report, Digital, 1994. http://www.
research.compaq.com/SRC/personal/lamport/tla/.

[19] Leslie Lamport. Refinement in State-Based For-
malisms. Technical Report SRC-1996-001, Digi-
tal, 1996. http://www.research.compaq.com/SRC/
personal/lamport/tla/.

[20] Saunders Mac Lane. Categories for the Working Math-
ematician, Second Edition. Springer, 1998.

[21] Satoshi Matsuoka, Takuo Watanabe, Yuuji Ichisugi,
and Akinori Yonezawa. Object-oriented concurrent re-
flective architectures. Lecture Notes in Computer Sci-
ence, 612:211–??, 1992.

[22] Sigurd Meldal and Michal Antonin Walicki.
Nondeterministic Operators in Algebraic Frame-
works. Technical report, Stanford CS Laboratory,
1995. http://elib.stanford.edu/Dienst/UI/2.0/
Describe/stanford.cs/CSL-TR-95-664.

[23] David Mosberger, Peter Drushel, and Larry L. Peter-
son. Implementing Atomic Sequences on Uniproces-
sors Using Rollforward. Software – Practice and Expe-
riences, 26(1), January 1996.

[24] Simon Peyton-Jones and Norman Ramsey. Machine-
Independent Support for Garbage Collection, Debug-
ging, Exception Handling, and Concurrency. Techni-
cal Report CS-98-19, Department of Computer Science,
University of Virginia, August 1998. http://www.cs.
virginia.edu/~nr/pubs/c--rti-abstract.html.

[25] Cornelia Pusch. Verification of Compiler Correct-
ness for the WAM. In J. von Wright, J. Grundy,
and J. Harrison, editors, Theorem Proving in Higher
Order Logics (TPHOLs’96), pages 347–362. Springer-
Verlag, 1996. http://isabelle.in.tum.de/~pusch/
pubs/Pusch_TPiH1996.html.

[26] François-René Rideau. Metaprogramming and free
availability of sources, January 1999. Translated
from the french article “Métaprogrammation et li-
bre disponibilité des sources” published in confer-
ence “Autour du Libre 1999”. http://fare.tunes.
org/articles/ll99/index.en.html.

[27] François-René Rideau. Reflection, non-determinism,
and the lambda-calculus. Rapport de recherche non
publié, CNET, 1999. http://fare.tunes.org/tmp/
rndlc/.

[28] Paul R. Wilson. Uniprocessor Garbage Collection Tech-
niques. In Proceedings of the 1992 International Work-
shop on Memory Management, 1992. http://www.cs.
utexas.edu/users/oops/papers.html.

A Acknowledgements

I would like to thank Elie Najm, my PhD advisor, for helping
me to clarify some implementation concepts. I am particu-
larly indebted to Fabien Delpiano, my fellow PhD student,
for his precious help while writing this paper. Also, I wish
to thank members of the Tunes project for their constant
help and support. Last but not least, I must express my
gratitude to Jean-Bernard Stefani, head of the marvelous
department DTL/ASR of CNET, who made this research
possible.

9


