
First-Class Implementations

Climbing Up the Semantic Tower — At Runtime

François-René Rideau, TUNES Project

LambdaConf, 2018-06-05

http://fare.tunes.org/files/cs/fci-lc2018.pdf

Based on my PhD thesis (completed in 2017, not defended)
1

Take Home Points

Reason about Implementations: Category Theory!

Practical Protocol Extraction: First-Class Impl.

Principled Applications: Migration, etc.

Runtime Reflection and Static Semantics

2

Advancement Status

Writing of PhD thesis completed after 20 years!

In my copious spare time: building
proof-of-concept.

TODO: Get language implementers on board.

4- PROFIT!

3

Advancement Status

Writing of PhD thesis completed after 20 years!

In my copious spare time: building
proof-of-concept.

TODO: Get language implementers on board.

4- PROFIT!

Point of View and R&D programme

4

I. Formalizing Implementations

5

I.1 A Universal Framework

6

Implementations, informally

7

You want a program

8

You have a PC

9

You write an implementation

10

In the best possible language

11

The language itself has an implementation

12

Specific dialects, implementations, versions...

13

Compiling is hard, use an IR...

14

Programming is hard, use a DSL...

15

What do you mean, x86?

16

There is no bottom!

17

Always finer divisions

18

Implementations, informally

Implementation: relating two computations

Specific implementations: SBCL 1.3.20…

Holding together Towers of computations

Reasoning: correctness, other useful properties

19

Formalization Challenges

First, we must formalize computations

- Few are adequately formalized

- Incompatible formalisms, to unify

Then, we must formalize implementations

- What suitable relations between computations?

- What composable properties for these relations?

20

Existing Semantic Formalisms to Unify

Operational Semantics (Small Step)

Operational Semantics (Big Step)

Labeled Transition Systems

Term Rewriting, Rewrite Logic

Modal Logic, Hoare Logic, Refinement

Partial Order

Abstract State Machines

Denotational Semantics reducing to the above

Denotational Semantics with equational theory

21

Category Theory

Universal: graphs, preorders, labeled transitions...

Simple core: nodes, arrows, structure preservation

Unlimited abstraction: always higher categories

Structural theorems "for free"

Types, Curry-Howard Isomorphism

Seeking the essential: no incidental punning

22

Categorical Notation

23

Computation as Categories

Nodes: states of the computation

Arrows: transitions between states, traces

Figure conventions:

- Computation progresses left to right

- Effect label above, category (subset) below
24

(Abstract) Interpretation

25

(Concrete) Implementation

26

Concrete Implementation vs Abstract Interpretation

Dynamic (Runtime) vs Static (Compile-time)

Operational Semantics vs Denotational Semantics

Downward (concrete) vs Upward (abstract)

Co-functorial vs Functorial

Noisy vs lossy

Non-deterministic vs deterministic

27

Partiality

28

Partial Functions (1)

29

Partial Functions (2)

30

Partial Functions (3)

31

Deduction

32

Observable State

33

Observable State

o = c

34

I.2 Properties of Implementations

35

Soundness

36

Totality

37

Completeness

38

Advance Preservation

39

Liveness

40

Composability

41

Composability

42

Composability

43

Observability (aka PCLSRing)

44

Observability (aka PCLSRing)

... not composable!

45

Observability + Completeness

Composable!

46

II. First-class Implementations

47

II.1 Protocol Extraction

48

Protocol: Categories (in Agda)

record Category … : Set … where …
 field
 Obj : Set …
 ⇒ : Rel Obj …
 id : ∀ {A} → (A ⇒ A)
 ∘ : ∀ {A B C} → (B ⇒ C) → (A ⇒ B) → (A ⇒ C)
 …

Showing fields with computational content

Many more fields for logical specification

49

Protocol: Categories (in Haskell)

class Cat s where
 type Arr s :: *
 dom :: (Arr s) ⟶ s
 cod :: (Arr s) ⟶ s
 idArr :: s ⟶ (Arr s)
 composeArr :: (Arr s) ⟶ (Arr s) ⤏ (Arr s)

Pure total functions: ⟶

Effectful functions: ⤏ (partial, non-det…)

50

Protocol: Operational Semantics

class (Cat s) ⇒ OpSem s where
 run :: s ⤏ Arr s
 done :: s ⟶ Bool
 advance :: s ⤏ Arr s
 eval :: s ⤏ Arr s

51

Protocol: Implementation

class Impl a c where
 interpret :: c ⤏ a
 interpretArr :: (Arr c) ⤏ (Arr a)

So far, a (partial) functor from c to a

Arr = pirate sound = functorial map

52

Protocol: Totality

implement :: a ⤏ c

53

Protocol: Completeness

implementArr :: c ⟶ (Arr a) ⤏ (Arr c)

54

Protocol: Completeness (with Dependent Types)

implementArr :: c ⟶ (Arr a) ⤏ (Arr c)

implement⇒ : ∀ (c : C.o) {a a' : A.o}
(f : C.⇒ a a') {Φ.o c a} → ∃(λ {c' : C.o} →
∃(λ (g : C.⇒ c c') → Φ.⇒ g f))

55

Protocol: Liveness

advanceInterpretation :: c ⤏ Arr c

56

Protocol: Observability (PCLSRing)

safePoint :: c ⤏ Arr c

safeArrow :: Arr c ⤏ Arr c

57

Reified vs Reflected Evaluation

Reified:

 eval :: s ⤏ Arr s

 Only effect is non-determinism

Reflected:

 eval! :: s ⤏ s

 Arbitrary side-effects

58

Runnable vs Observable Protocols

Reflection:

 perform :: s ⤏ m
 performArr :: (Arr s) ⟶ m ⤏ m

first-class semantics runnable as machine state

Reification:

 simulate :: m ⤏ s
 simulateArr :: m ⟶ (m ⤏ m) ⤏ Arr s

machine state observable as first-class semantics

59

Lifting Reflection and Reification Protocols

If you can implement a with c:

a.perform anod = anod & implement & c.perform

a.performArr aarr m =
 ((m & c.simulate & implementArr) aarr & c.performArr) m

a.simulate state = state & c.simulate & interpret

a.simulateArr m change =
 change & c.simulateArr m & safeArrow & interpretArr

60

Lifting Evaluation Protocols

If the implementation is live, observable:

a.run anod =
 anod & implement & c.run & safeArrow & interpretArr

a.advance anod =
 anod & implement & advanceInterpretation & interpretArr

61

II.2 The Semantic Tower

62

Compilation (1)

implement :: (Impl a c) ⇒ a ⤏ c

63

Compilation (2)

interpret :: (Impl a s) ⇒ s ⤏ a
implement :: (Impl a c) ⇒ a ⤏ c

64

Compilation (3)

u :: OpSem -- specify up to what rewrites
interpret :: (Impl u s) ⇒ s ⤏ u
implement :: (Impl u c) ⇒ u ⤏ c

65

Static Type Systems

Subject reduction: T contains no exomorphisms

66

Semantic Tower

67

The Tower is not Linear

68

More reinterpretations...

Aspect-Oriented Programming

Erlang-style Fault Tolerance

Refactoring

Developing

69

III. Principled Reflection

70

III.1 Migration

71

Migration

72

Migration (Optimized)

73

Migration (Optimized)

Does the second line break typing?

74

Migration (Implemented)

75

Migration (Factored out)

76

Migration Tower

77

When your hammer is Migration...

Process Migration

Garbage Collection

Zero Copy Routing

Dynamic Configuration

JIT Compilation

etc.

78

Fruitful change in Perspective

Correctness

Runtime Optimization

Retroactivity

Composability

Predictable Cost-Reduction

79

Requirement: Full Abstraction

Computations have a clear opaque bottom:

- It’s perfectly clear what the bottom is

- The bottom is totally opaque

Indeed, what’s below can change at runtime!

Alternatively, include what’s "below" in the spec

Needed: explicit language or system support

80

Migration Control

Internal: automatic change in representation

External: parameters under user control

One man’s internal is another man’s external…

Need an Architecture for migration control

81

III.2 Natural Transformations of Implementations

82

Instrumentation

Tracing, Logging, Stepping, Profiling

Omniscient debugging, Comparative Debugging

Code and Data Coverage

Resource Accounting, Access Control

Parallelization, Optimistic Evaluation

Orthogonal persistence

Virtualization

Optimizations

83

Natural Transformation

Twist: dual of nat. transf. on dual of (partial) funct.

Automatic Instrumentation

Universal transformations

Composable transformations

Amenable to formal reasoning

Open problem, but promiseful approach

84

IV. Reflective Architecture

85

IV.1 Runtime Architecture

86

Runtime Architecture

Development Platform (Emacs, IDE, ...)

User Interface Shell

Operating System

Distributed and Virtualized Application
Management

87

Every Program has a Semantic Tower

Semantics on top + Turtles all the way to the
bottom

Top specified by User, bottom controlled by System

For the PLs your build, those you use

Static or dynamic control

88

Every Tower has its Controller

Runtime Meta-program, Shared (or not)

Virtualization: control effects, connect I/O

Reflective Tower of Meta-programs

New meta dimension: Puppeteers all the way back!

89

Implicit I/O

Input :: tag -> IO indata
Output :: tag -> outdata -> IO ()

Effects handled by the controller

Virtualization of effects at language level

Dynamically reconfigurable

90

IV.2 Architectural Benefits

91

Performance: Dynamic Global Optimization

When configuration changes, migrate

Optimize the current configuration

Minimize encoding, Zero copy

Skip unobserved computations

92

Simplicity: Separate program and metaprogram

Example: File selector, UI, etc.

Evolve, Distribute, Share, Configure separately

Separate Capabilities, Semantics

Robustness, Security: Smaller Attack Surface

93

Not Just a Library

Semantic separation vs inclusion

Bound at Runtime vs Fixed at Compile-/Load- time

Different scopes and capabilities

Different control flow

94

Different Social Architecture

New dimension of modularity

Deliver components, not applications

No more fixed bottom, fine-grained virtualization

Orthogonally address “Non-functional
requirements”

Pay aspect specialists for components
95

Conclusion

96

Related Works and Opportunities

Formal Methods for proving program correctness

Open Implementation, AOP...

Many hacks for GC, Migration, Persistence...

Virtualization, distribution...

97

Common Theme

Programming in the Large, not in the Small

Software Architecture that Scales

Semantics matter

Dimensions of Modularity beyond the usual

98

The Take Home Points

Reason about Implementations: Category Theory!
Observability: Key neglected concept — safe points

Practical Protocol Extraction: First-Class Impl.
Explore the Semantic Tower — at runtime!

Principled Applications: Migration, etc.
Natural Transformations generalize Instrumentation

Runtime Reflection and Static Semantics
Price: Full Abstraction, Observability, Interpretation

99

Challenge

Put First-class Implementations in your platform

Factor your software into meta-levels

Develop Generic Tooling, Reflective Architecture

Enjoy simplification, robustness, security

100

The Meta-Story

My contribution is mostly not technical.

It is more ambitious:

101

The Meta-Story

My contribution is mostly not technical.

It is more ambitious:

A change of point of view about computing

102

The Meta-Story

My contribution is mostly not technical.

It is more ambitious:

A change of point of view about computing

The essence of FP: relating abstract and concrete

My blog: Houyhnhnm Computing
https://ngnghm.github.io/

Ancient: TUNES Project
https://tunes.org/

103

