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Take Home Points

Reason about Implementations: Category Theory!

     

Practical Protocol Extraction: First-Class Impl.

     

Principled Applications: Migration, etc.

     

Runtime Reflection  and   Static Semantics
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Advancement Status

Writing of PhD thesis completed after 20 years!

     

In my copious spare time: building
proof-of-concept.

     

TODO: Get language implementers on board.

     

4- PROFIT!

3



Advancement Status

Writing of PhD thesis completed after 20 years!

     

In my copious spare time: building
proof-of-concept.

     

TODO: Get language implementers on board.

     

4- PROFIT!

Point of View and R&D programme
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I. Formalizing Implementations
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I.1 A Universal Framework
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Implementations, informally
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You want a program
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You have a PC
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You write an implementation
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In the best possible language
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The language itself has an implementation
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Specific dialects, implementations, versions...
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Compiling is hard, use an IR...
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Programming is hard, use a DSL...
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What do you mean, x86?
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There is no bottom!
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Always finer divisions
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Implementations, informally

     

Implementation:  relating two computations

     

Specific implementations: SBCL 1.3.20…

     

Holding together  Towers of computations

     

Reasoning: correctness, other useful properties
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Formalization Challenges

First, we must formalize computations

- Few are adequately formalized

- Incompatible formalisms,  to unify

     

Then, we must formalize implementations

- What suitable relations between computations?

- What composable properties for these relations?
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Existing Semantic Formalisms to Unify

Operational Semantics (Small Step)

Operational Semantics (Big Step)

Labeled Transition Systems

Term Rewriting, Rewrite Logic

Modal Logic, Hoare Logic, Refinement

Partial Order

Abstract State Machines

Denotational Semantics reducing to the above

Denotational Semantics with equational theory
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Category Theory

Universal: graphs, preorders, labeled transitions...

Simple core: nodes, arrows, structure preservation

Unlimited abstraction: always higher categories

     

Structural theorems "for free"

Types, Curry-Howard Isomorphism

Seeking the essential: no incidental punning
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Categorical Notation
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Computation as Categories

Nodes: states of the computation

Arrows: transitions between states, traces

     

     

Figure conventions:

- Computation progresses left to right

- Effect label above, category (subset) below
24



(Abstract) Interpretation
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(Concrete) Implementation
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Concrete Implementation vs Abstract Interpretation

Dynamic (Runtime) vs Static (Compile-time)

Operational Semantics vs Denotational Semantics

     

Downward (concrete) vs Upward (abstract)

Co-functorial vs Functorial

Noisy vs lossy

Non-deterministic vs deterministic
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Partiality
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Partial Functions (1)
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Partial Functions (2)
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Partial Functions (3)
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Deduction
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Observable State
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Observable State

     

o = c
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I.2 Properties of Implementations
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Soundness
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Totality
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Completeness
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Advance Preservation
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Liveness
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Composability
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Composability
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Composability
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Observability (aka PCLSRing)
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Observability (aka PCLSRing)

... not composable!
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Observability + Completeness

Composable!
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II. First-class Implementations
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II.1 Protocol Extraction
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Protocol: Categories (in Agda)

record Category … : Set … where …
  field
    Obj : Set …
    _⇒_ : Rel Obj …
    id : ∀ {A} → (A ⇒ A)
    _∘_ : ∀ {A B C} → (B ⇒ C) → (A ⇒ B) → (A ⇒ C)
  …

Showing fields with computational content

Many more fields for logical specification
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Protocol: Categories (in Haskell)

class Cat s where
  type Arr s :: *
  dom :: (Arr s) ⟶ s
  cod :: (Arr s) ⟶ s
  idArr :: s ⟶ (Arr s)
  composeArr :: (Arr s) ⟶ (Arr s) ⤏ (Arr s)

     

Pure total functions:  ⟶

Effectful functions:  ⤏ (partial, non-det…)
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Protocol: Operational Semantics

class (Cat s) ⇒ OpSem s where
  run :: s ⤏ Arr s
  done :: s ⟶ Bool
  advance :: s ⤏ Arr s
  eval :: s ⤏ Arr s
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Protocol: Implementation

class Impl a c where
  interpret :: c ⤏ a
  interpretArr :: (Arr c) ⤏ (Arr a)

     

So far, a (partial) functor from  c to  a

Arr = pirate sound = functorial map
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Protocol: Totality

     

implement :: a ⤏ c
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Protocol: Completeness

implementArr :: c ⟶ (Arr a) ⤏ (Arr c)     
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Protocol: Completeness (with Dependent Types)

implementArr :: c ⟶ (Arr a) ⤏ (Arr c)     

implement⇒ : ∀ (c : C.o) {a a' : A.o}
(f : C.⇒ a a') {Φ.o c a} → ∃(λ {c' : C.o} →
∃(λ (g : C.⇒ c c') → Φ.⇒ g f))
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Protocol: Liveness

     

advanceInterpretation :: c ⤏ Arr c
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Protocol: Observability (PCLSRing)

     

safePoint :: c ⤏ Arr c

safeArrow :: Arr c ⤏ Arr c
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Reified vs Reflected Evaluation

Reified:

  eval :: s ⤏ Arr s

  Only effect is non-determinism

     

     

Reflected:

  eval! :: s ⤏ s    

  Arbitrary side-effects
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Runnable vs Observable Protocols

Reflection:

  perform :: s ⤏ m
  performArr :: (Arr s) ⟶ m ⤏ m      

first-class semantics runnable as machine state

     

Reification:

  simulate :: m ⤏ s
  simulateArr :: m ⟶ (m ⤏ m) ⤏ Arr s

machine state observable as first-class semantics
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Lifting Reflection and Reification Protocols

If you can  implement  a with  c:

a.perform anod = anod & implement & c.perform
 
a.performArr aarr m =
  ((m & c.simulate & implementArr) aarr & c.performArr) m
 
a.simulate state = state & c.simulate & interpret
 
a.simulateArr m change =
  change & c.simulateArr m & safeArrow & interpretArr
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Lifting Evaluation Protocols

If the implementation is live, observable:

a.run anod =
  anod & implement & c.run & safeArrow & interpretArr
 
a.advance anod =
  anod & implement & advanceInterpretation & interpretArr
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II.2 The Semantic Tower
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Compilation (1)

     

     

implement :: (Impl a c) ⇒ a ⤏ c
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Compilation (2)

     

interpret :: (Impl a s) ⇒ s ⤏ a
implement :: (Impl a c) ⇒ a ⤏ c
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Compilation (3)

u :: OpSem -- specify up to what rewrites
interpret :: (Impl u s) ⇒ s ⤏ u
implement :: (Impl u c) ⇒ u ⤏ c
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Static Type Systems

     

Subject reduction:  T contains no exomorphisms
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Semantic Tower
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The Tower is not Linear
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More reinterpretations...

Aspect-Oriented Programming

     

Erlang-style Fault Tolerance

     

Refactoring

     

Developing
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III. Principled Reflection
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III.1 Migration
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Migration
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Migration (Optimized)
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Migration (Optimized)

     

Does the second line break typing?
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Migration (Implemented)

75



Migration (Factored out)
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Migration Tower
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When your hammer is Migration...

Process Migration

Garbage Collection

Zero Copy Routing

Dynamic Configuration

JIT Compilation

etc.
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Fruitful change in Perspective

Correctness

Runtime Optimization

Retroactivity

Composability

Predictable Cost-Reduction
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Requirement: Full Abstraction

Computations have a clear opaque bottom:

- It’s perfectly clear what the bottom is

- The bottom is totally opaque

     

Indeed, what’s below can change at runtime!

Alternatively, include what’s "below" in the spec

Needed: explicit language or system support
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Migration Control

Internal: automatic change in representation

     

External: parameters under user control

     

One man’s internal is another man’s external…

     

Need an Architecture for migration control
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III.2 Natural Transformations of Implementations
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Instrumentation

Tracing, Logging, Stepping, Profiling

Omniscient debugging, Comparative Debugging

Code and Data Coverage

Resource Accounting, Access Control

Parallelization, Optimistic Evaluation

Orthogonal persistence

Virtualization

Optimizations
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Natural Transformation

Twist:  dual of nat. transf. on  dual of (partial) funct.

     

Automatic Instrumentation

Universal transformations

Composable transformations

Amenable to formal reasoning

     

Open problem, but promiseful approach
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IV. Reflective Architecture
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IV.1 Runtime Architecture
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Runtime Architecture

Development Platform (Emacs, IDE, ...)

     

User Interface Shell

     

Operating System

     

Distributed and Virtualized Application
Management
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Every Program has a Semantic Tower

Semantics on top + Turtles all the way to the
bottom

     

Top specified by User, bottom controlled by System

     

For the PLs your build, those you use

     

Static or dynamic control
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Every Tower has its Controller

Runtime Meta-program, Shared (or not)

     

Virtualization: control effects, connect I/O

     

Reflective Tower of Meta-programs

     

New meta dimension: Puppeteers all the way back!
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Implicit I/O

Input :: tag -> IO indata
Output :: tag -> outdata -> IO ()

     

Effects handled by the controller

     

Virtualization of effects at language level

     

Dynamically reconfigurable
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IV.2 Architectural Benefits
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Performance: Dynamic Global Optimization

When configuration changes, migrate

     

Optimize the current configuration

     

Minimize encoding, Zero copy

     

Skip unobserved computations
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Simplicity: Separate program and metaprogram

Example: File selector, UI, etc.

     

Evolve, Distribute, Share, Configure separately

     

Separate Capabilities, Semantics

     

Robustness, Security: Smaller Attack Surface
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Not Just a Library

Semantic separation vs inclusion

     

Bound at Runtime vs Fixed at Compile-/Load- time

     

Different scopes and capabilities

     

Different control flow
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Different Social Architecture

New dimension of modularity

     

Deliver components, not applications

     

No more fixed bottom, fine-grained virtualization

     

Orthogonally address “Non-functional
requirements”

     

Pay aspect specialists for components
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Conclusion

96



Related Works and Opportunities

Formal Methods for proving program correctness

     

Open Implementation, AOP...

     

Many hacks for GC, Migration, Persistence...

     

Virtualization, distribution...
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Common Theme

Programming in the Large, not in the Small

     

Software Architecture that Scales

     

Semantics matter

     

Dimensions of Modularity beyond the usual
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The Take Home Points

Reason about Implementations: Category Theory!
Observability: Key neglected concept — safe points

     

Practical Protocol Extraction: First-Class Impl.
Explore the Semantic Tower — at runtime!

     

Principled Applications: Migration, etc.
Natural Transformations generalize Instrumentation

     

Runtime Reflection  and   Static Semantics
Price: Full Abstraction, Observability, Interpretation
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Challenge

Put First-class Implementations in your platform

     

Factor your software into meta-levels

     

Develop Generic Tooling, Reflective Architecture

     

Enjoy simplification, robustness, security
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The Meta-Story

My contribution is mostly not technical.

It is more ambitious:
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The Meta-Story

My contribution is mostly not technical.

It is more ambitious:

A change of point of view about computing
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The Meta-Story

My contribution is mostly not technical.

It is more ambitious:

A change of point of view about computing

     

The essence of FP: relating abstract and concrete

     

My blog:  Houyhnhnm Computing
https://ngnghm.github.io/

Ancient:  TUNES Project
https://tunes.org/
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