
First-Class Implementations

Climbing Up the Semantic Tower — At Runtime

François-René Rideau, TUNES Project

DeepSpec Summer School, 2018-07-23

http://fare.tunes.org/files/cs/fci-ds2018.pdf

Based on my PhD thesis (completed in 2017, not defended)
Also showed at OBT 2018, LambdaConf 2018

1

I. Implementations

2

I.1 A Universal Framework

3

You want a program

4

You have a PC

5

You write an implementation

6

In the best possible language

7

The language itself has an implementation

8

Specific dialects, implementations, versions...

9

Compiling is hard, use an IR...

10

Programming is hard, use a DSL...

11

What do you mean, x86?

12

There is no bottom!

13

Always finer divisions

14

Existing Semantic Formalisms to Unify

Operational Semantics (Small Step)

Operational Semantics (Big Step)

Labeled Transition Systems

Term Rewriting, Rewrite Logic

Modal Logic, Hoare Logic, Refinement

Partial Order

Abstract State Machines

Denotational Semantics reducing to the above

Denotational Semantics with equational theory

15

Category Theory

Universal: graphs, preorders, labeled transitions...

Simple core: nodes, arrows, structure preservation

Unlimited abstraction: always higher categories

Structural theorems "for free"

Types, Curry-Howard Isomorphism

Seeking the essential: no incidental punning

16

Computation as Categories

Nodes: states of the computation
Arrows: transitions between states, traces

Figure conventions:
- Computation progresses left to right
- Effect label above, category (subset) below
- Dotted lines for partiality and other effects

17

(Abstract) Interpretation

18

(Concrete) Implementation

19

I.2 Properties of Implementations

20

Soundness

21

Totality

22

Completeness

23

Liveness

24

Observability (aka PCLSRing)

25

Observability (aka PCLSRing)

... not composable!

26

Observability + Completeness

Composable!

27

II. First-class Implementations

28

II.1 Protocol Extraction

29

Protocol: Categories (in Agda)

record Category … : Set … where …
 field
 Obj : Set …
 ⇒ : Rel Obj …
 id : ∀ {A} → (A ⇒ A)
 ∘ : ∀ {A B C} → (B ⇒ C) → (A ⇒ B) → (A ⇒ C)
 …

Showing fields with computational content

Many more fields for logical specification

30

Protocol: Categories (in Haskell)

class Cat s where
 type Arr s :: *
 dom :: (Arr s) ⟶ s
 cod :: (Arr s) ⟶ s
 idArr :: s ⟶ (Arr s)
 composeArr :: (Arr s) ⟶ (Arr s) ⤏ (Arr s)

Pure total functions: ⟶

Effectful functions: ⤏ (partial, non-det…)

31

Protocol: Operational Semantics

class (Cat s) ⇒ OpSem s where
 run :: s ⤏ Arr s
 done :: s ⟶ Bool
 advance :: s ⤏ Arr s
 eval :: s ⤏ Arr s

32

Protocol: Implementation

class Impl a c where
 interpret :: c ⤏ a
 interpretArr :: (Arr c) ⤏ (Arr a)

So far, a (partial) functor from c to a

Arr = pirate sound = functorial map

33

Protocol: Totality

implement :: a ⤏ c

34

Protocol: Completeness

implementArr :: c ⟶ (Arr a) ⤏ (Arr c)

35

Protocol: Completeness (with Dependent Types)

implementArr :: c ⟶ (Arr a) ⤏ (Arr c)

implement⇒ : ∀ (c : C.o) {a a' : A.o}
(f : C.⇒ a a') {Φ.o c a} → ∃(λ {c' : C.o} →
∃(λ (g : C.⇒ c c') → Φ.⇒ g f))

36

Protocol: Liveness

advanceInterpretation :: c ⤏ Arr c

37

Protocol: Observability (PCLSRing)

safePoint :: c ⤏ Arr c

safeArrow :: Arr c ⤏ Arr c

38

II.2 The Semantic Tower

39

Compilation (1)

implement :: (Impl a c) ⇒ a ⤏ c

40

Compilation (2)

interpret :: (Impl a s) ⇒ s ⤏ a
implement :: (Impl a c) ⇒ a ⤏ c

41

Compilation (3)

u :: OpSem -- specify up to what rewrites
interpret :: (Impl u s) ⇒ s ⤏ u
implement :: (Impl u c) ⇒ u ⤏ c

42

Static Type Systems

Subject reduction: T contains no exomorphisms

43

Semantic Tower

44

The Tower is not Linear

45

III. Applications

46

III.1 Reconciling Reflection and Semantics

47

More reinterpretations...

Aspect-Oriented Programming

Erlang-style Fault Tolerance

Developing, Refactoring

Migration: Mobility, GC, JIT, Zero Copy, Reconfig...

Dynamic Control: implicit IO, virtualization...

Reflective Towers: Turtles all the way down...

Interaction: Operating System Shell, IDE, ...

Architecture: Meta-Objects, not reducible to libraries

48

Fruitful change in Perspective

Correctness

Composability

Runtime Optimization

Retroactive Features

Predictable Cost-Reduction

49

Requirement: Full Abstraction

Computations have a clear opaque bottom:

- It’s perfectly clear what the bottom is

- The bottom is totally opaque

Indeed, what’s below can change at runtime!

Alternatively, include what’s "below" in the spec

Needed: explicit language or system support

50

III.2 Natural Transformations of Implementations

51

Instrumentation

Tracing, Logging, Stepping, Profiling

Omniscient debugging, Comparative Debugging

Code and Data Coverage

Resource Accounting, Access Control

Parallelization, Optimistic Evaluation

Orthogonal persistence

Virtualization

Optimizations

52

Natural Transformation

Twist: dual of nat. transf. on dual of (partial) funct.

Adjunction: forget details added by the
instrumentation

Automatic Instrumentation

Universal transformations

Composable transformations

Amenable to formal reasoning

Open problem, but promiseful approach
53

Conclusion

54

Common Theme

Programming in the Large, not in the Small

Software Architecture that Scales

Semantics matter

Dimensions of Modularity beyond the usual

55

The Take Home Points

Reason about Implementations: Category Theory!
Observability: Key neglected concept — safe points

Practical Protocol Extraction: First-Class Impl.
Explore the Semantic Tower — at runtime!

Principled Applications: Migration, etc.
Natural Transformations generalize Instrumentation

Runtime Reflection and   Static Semantics
Price: Full Abstraction, Observability, Interpretation

56

Challenge

Put First-class Implementations in your platform

Factor your software into meta-levels

Develop Generic Tooling, Reflective Architecture

Enjoy simplification, robustness, security

57

The Meta-Story

My contribution is mostly not technical.

It is more ambitious:

58

The Meta-Story

My contribution is mostly not technical.

It is more ambitious:

A change of point of view about computing

My thesis (undefended):
https://bit.ly/FarePhD

My blog: https://ngnghm.github.io/
Ancient: https://tunes.org/

Legicash is hiring Coq developers
Legicash is looking for Academic Collaborators

59

