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This Talk

Salvaged from my aborted 1999 PhD thesis:

The Semantics of Reflective Systems

     

Cousot at ENS was teaching Abstract
Interpretation.

All I was interested in was the opposite direction:

Concrete Implementation
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The Take Home Points

Implementation is co-(Abstract Interpretation)

Safe points are a key concept

     

First-class: the opposite of magic

First-class safe points (= PCLSRing!)

     

Applications: Migration, Optimistic Evaluation, etc.

Composing implementations for fun and profit

     

Runtime meta-programming brings new modularity
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Plan

Implementation: Formalizing the notion

     

     

First-class Implementation protocol

     

     

Applications of First-class Implementations

     

     

Runtime meta-programming architecture
4



I. Formalizing the notion of Implementation
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Abstract Interpretation
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Concrete Implementation
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Concrete Implementation vs Abstract Interpretation

Dynamic (Runtime) vs Static (Compile-time)

Operational Semantics vs Denotational Semantics

     

Downward (concrete) vs Upward (abstract)

Co-functorial vs Functorial

Noisy vs lossy

Non-deterministic vs deterministic
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Categories
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Categories
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Partial Functions (1)
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Partial Functions (2)
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Partial Functions (3)
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Deduction
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Observable State
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Observable State

     

o = c
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Operational Semantics

17



Soundness

18



Totality
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Completeness
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Advance Preservation
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Liveness
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Strong Liveness
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Composability
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Composability
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Composability
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Observability (aka PCLSRing)
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Observability (aka PCLSRing)
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II. First-class Implementation protocol
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Protocol: Categories

class Cat s where
  type Arr s :: *
  dom :: (Arr s) ⟶ s
  cod :: (Arr s) ⟶ s
  composeArr :: (Arr s) ⟶ (Arr s) ⟶ (Arr s)
  applyArr :: (Arr s) ⟶ s ⤏ s

     

Usual functions:  ⟶

Effectful functions:  ⤏
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Protocol: Operational Semantics

class (Cat s) ⇒ OpSem s where
  run :: s ⤏ Arr s
  done :: s ⟶ Bool
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Protocol: Operational Semantics

class (Cat s) ⇒ OpSem s where
  run :: s ⤏ Arr s
  done :: s ⟶ Bool

  eval :: s ⤏ Arr s
  advance :: s ⤏ Arr s       
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Protocol: Implementation

class Impl a c where
  interpret :: c ⤏ a
  mapInterpret :: (Arr c) ⤏ (Arr a)

     

So far, a functor from  c to  a
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Protocol: Totality

     

implement :: a ⤏ c
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Protocol: Completeness

     

step :: c ⟶ (Arr a) ⤏ (Arr c)
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Protocol: Liveness

     

advanceInterpretation :: c ⤏ Arr c
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Protocol: Observability (PCLSRing)

     

safePoint :: c ⤏ Arr c
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Compilation (1)

     

     

implement :: (Impl a c) ⇒ a ⤏ c
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Compilation (2)

     

interpret :: (Impl a s) ⇒ s ⤏ a
implement :: (Impl a c) ⇒ a ⤏ c
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Compilation (3)

u :: OpSem -- specify up to what rewrites
interpret :: (Impl u s) ⇒ s ⤏ u
implement :: (Impl u c) ⇒ u ⤏ c
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Static Type Systems

     

Subject reduction:  T contains no exomorphisms
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III. Applications of First-class Implementations
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Migration
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When your hammer is Migration...

Process Migration

Garbage Collection

Zero Copy Routing

Dynamic Configuration

JIT Compilation

etc.
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Migration (Optimized)
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Migration (Implemented)
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Migration (Factored out)
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Migration Tower
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Semantic Tower
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Optimistic Evaluation
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Aspect-Oriented Programming (1)
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Aspect-Oriented Programming (2)
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Aspect-Oriented Programming (2)

     

Constraint Logic Meta-programming!
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Natural Transformations of Implementations
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Natural Transformations of Implementations

Automatic Instrumentation

Code and Data Coverage

Omniscient debugging

Resource Accounting

Parallelization

Orthogonal persistence

Virtualization

etc.
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IV. Runtime Meta-programming Architecture
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Runtime Architecture
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Runtime Architecture

Development Platform (Emacs, IDE, ...)

     

User Interface Shell

     

Operating System

     

Distributed and Virtualized Application
Management
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Every Program has a Semantic Tower

Semantics on top + Turtles all the way to the
bottom

     

Top specified by User, bottom controlled by System

     

For the PLs your build, those you use

     

Static or dynamic control
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Every Tower has its Controller

Runtime Meta-program, Shared (or not)

     

Virtualization: control effects, connect I/O

     

Reflective Tower of Meta-programs

     

Another dimension to diagrams! Turtles?
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Implicit I/O

Input :: tag -> IO indata
Output :: tag -> outdata -> IO ()

     

Handled by controller

     

Virtualization of effects at language level

     

Dynamically reconfigurable
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Performance: Dynamic Global Optimization

When configuration changes, migrate

     

Optimize the current configuration

     

Minimize encoding, Zero copy

     

Skip unobserved computations
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Simplicity: Separate program and metaprogram

Example: File selector, UI, etc.

     

Evolve, Distribute, Share, Configure separately

     

Separate Capabilities, Semantics

     

Robustness, Security: Smaller Attack Surface
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Not Just a Library

Semantic separation vs inclusion

     

Bound at Runtime vs Fixed at Compile-/Load- time

     

Different scopes and capabilities

     

Different control flow
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Related Works and Opportunities

Formal Methods for proving program correctness

     

Open Implementation, AOP...

     

Many hacks for GC, Migration, Persistence...

     

Virtualization, distribution...
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Common Theme

Programming in the Large, not in the Small

     

Software Architecture that Scales

     

Semantics matter

     

Dimensions of Modularity beyond the usual
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The Take Home Points (redux)

Implementation is co-(Abstract Interpretation)

Safe points are a key concept

     

First-class: the opposite of magic

First-class safe points (= PCLSRing!)

     

Applications: Migration, Optimistic Evaluation, etc.

Composing implementations for fun and profit

     

Runtime meta-programming brings new modularity
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Challenge

Put First-class Implementations in your platform

     

Platform: PL, IDE, OS, Shell, Distributed System

     

Factor your software into meta-levels

     

Enjoy simplification, robustness, security
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The Meta-Story

My contribution is mostly not technical.

It is more ambitious:

69



The Meta-Story

My contribution is mostly not technical.

It is more ambitious:

     

A change of point of view about computing
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The Meta-Story

My contribution is mostly not technical.

It is more ambitious:

     

A change of point of view about computing

     

Thank you!

     

My blog:  Houyhnhnm Computing

http://ngnghm.github.io/
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