
First-class Implementations

Turtling down Runtime Meta-levels

and PCLSRing up

François-René Rideau, TUNES Project

BostonHaskell, 2016-05-18

http://fare.tunes.org/files/cs/fci-bh2016.pdf

1

This Talk

Salvaged from my aborted 1999 PhD thesis:

The Semantics of Reflective Systems

Cousot at ENS was teaching Abstract
Interpretation.

All I was interested in was the opposite direction:

Concrete Implementation

2

The Take Home Points

Implementation is co-(Abstract Interpretation)

Safe points are a key concept

First-class: the opposite of magic

First-class safe points (= PCLSRing!)

Applications: Migration, Optimistic Evaluation, etc.

Composing implementations for fun and profit

Runtime meta-programming brings new modularity
3

Plan

Implementation: Formalizing the notion

First-class Implementation protocol

Applications of First-class Implementations

Runtime meta-programming architecture
4

I. Formalizing the notion of Implementation

5

Abstract Interpretation

6

Concrete Implementation

7

Concrete Implementation vs Abstract Interpretation

Dynamic (Runtime) vs Static (Compile-time)

Operational Semantics vs Denotational Semantics

Downward (concrete) vs Upward (abstract)

Co-functorial vs Functorial

Noisy vs lossy

Non-deterministic vs deterministic

8

Categories

9

Categories

10

Partial Functions (1)

11

Partial Functions (2)

12

Partial Functions (3)

13

Deduction

14

Observable State

15

Observable State

o = c

16

Operational Semantics

17

Soundness

18

Totality

19

Completeness

20

Advance Preservation

21

Liveness

22

Strong Liveness

23

Composability

24

Composability

25

Composability

26

Observability (aka PCLSRing)

27

Observability (aka PCLSRing)

28

II. First-class Implementation protocol

29

Protocol: Categories

class Cat s where
 type Arr s :: *
 dom :: (Arr s) ⟶ s
 cod :: (Arr s) ⟶ s
 composeArr :: (Arr s) ⟶ (Arr s) ⟶ (Arr s)
 applyArr :: (Arr s) ⟶ s ⤏ s

Usual functions: ⟶

Effectful functions: ⤏

30

Protocol: Operational Semantics

class (Cat s) ⇒ OpSem s where
 run :: s ⤏ Arr s
 done :: s ⟶ Bool

31

Protocol: Operational Semantics

class (Cat s) ⇒ OpSem s where
 run :: s ⤏ Arr s
 done :: s ⟶ Bool

 eval :: s ⤏ Arr s
 advance :: s ⤏ Arr s

32

Protocol: Implementation

class Impl a c where
 interpret :: c ⤏ a
 mapInterpret :: (Arr c) ⤏ (Arr a)

So far, a functor from c to a

33

Protocol: Totality

implement :: a ⤏ c

34

Protocol: Completeness

step :: c ⟶ (Arr a) ⤏ (Arr c)

35

Protocol: Liveness

advanceInterpretation :: c ⤏ Arr c

36

Protocol: Observability (PCLSRing)

safePoint :: c ⤏ Arr c

37

Compilation (1)

implement :: (Impl a c) ⇒ a ⤏ c

38

Compilation (2)

interpret :: (Impl a s) ⇒ s ⤏ a
implement :: (Impl a c) ⇒ a ⤏ c

39

Compilation (3)

u :: OpSem -- specify up to what rewrites
interpret :: (Impl u s) ⇒ s ⤏ u
implement :: (Impl u c) ⇒ u ⤏ c

40

Static Type Systems

Subject reduction: T contains no exomorphisms

41

III. Applications of First-class Implementations

42

Migration

43

When your hammer is Migration...

Process Migration

Garbage Collection

Zero Copy Routing

Dynamic Configuration

JIT Compilation

etc.

44

Migration (Optimized)

45

Migration (Implemented)

46

Migration (Factored out)

47

Migration Tower

48

Semantic Tower

49

Optimistic Evaluation

50

Aspect-Oriented Programming (1)

51

Aspect-Oriented Programming (2)

52

Aspect-Oriented Programming (2)

Constraint Logic Meta-programming!

53

Natural Transformations of Implementations

54

Natural Transformations of Implementations

Automatic Instrumentation

Code and Data Coverage

Omniscient debugging

Resource Accounting

Parallelization

Orthogonal persistence

Virtualization

etc.

55

IV. Runtime Meta-programming Architecture

56

Runtime Architecture

57

Runtime Architecture

Development Platform (Emacs, IDE, ...)

User Interface Shell

Operating System

Distributed and Virtualized Application
Management

58

Every Program has a Semantic Tower

Semantics on top + Turtles all the way to the
bottom

Top specified by User, bottom controlled by System

For the PLs your build, those you use

Static or dynamic control

59

Every Tower has its Controller

Runtime Meta-program, Shared (or not)

Virtualization: control effects, connect I/O

Reflective Tower of Meta-programs

Another dimension to diagrams! Turtles?

60

Implicit I/O

Input :: tag -> IO indata
Output :: tag -> outdata -> IO ()

Handled by controller

Virtualization of effects at language level

Dynamically reconfigurable

61

Performance: Dynamic Global Optimization

When configuration changes, migrate

Optimize the current configuration

Minimize encoding, Zero copy

Skip unobserved computations

62

Simplicity: Separate program and metaprogram

Example: File selector, UI, etc.

Evolve, Distribute, Share, Configure separately

Separate Capabilities, Semantics

Robustness, Security: Smaller Attack Surface

63

Not Just a Library

Semantic separation vs inclusion

Bound at Runtime vs Fixed at Compile-/Load- time

Different scopes and capabilities

Different control flow

64

Related Works and Opportunities

Formal Methods for proving program correctness

Open Implementation, AOP...

Many hacks for GC, Migration, Persistence...

Virtualization, distribution...

65

Common Theme

Programming in the Large, not in the Small

Software Architecture that Scales

Semantics matter

Dimensions of Modularity beyond the usual

66

The Take Home Points (redux)

Implementation is co-(Abstract Interpretation)

Safe points are a key concept

First-class: the opposite of magic

First-class safe points (= PCLSRing!)

Applications: Migration, Optimistic Evaluation, etc.

Composing implementations for fun and profit

Runtime meta-programming brings new modularity
67

Challenge

Put First-class Implementations in your platform

Platform: PL, IDE, OS, Shell, Distributed System

Factor your software into meta-levels

Enjoy simplification, robustness, security

68

The Meta-Story

My contribution is mostly not technical.

It is more ambitious:

69

The Meta-Story

My contribution is mostly not technical.

It is more ambitious:

A change of point of view about computing

70

The Meta-Story

My contribution is mostly not technical.

It is more ambitious:

A change of point of view about computing

Thank you!

My blog: Houyhnhnm Computing

http://ngnghm.github.io/

71

