
Climbing Up the Semantic Tower — at Runtime
François-René Rideau

TUNES
fare@tunes.org

Abstract
Software exists at multiple levels of abstraction, where each
more concrete level is an implementation of the more ab-
stract level above, in a semantic tower of compilers and/or
interpreters. First-class implementations are a reflection pro-
tocol to navigate this tower at runtime: they enable changing
the underlying implementation of a computation while it
is running. Key is a generalized notion of safe points that
enable observing a computation at a higher-level than that
at which it runs, and therefore to climb up the semantic
tower, when at runtime most existing systems only ever al-
low but to go further down. The protocol was obtained by
extracting the computational content of a formal specifica-
tion for implementations and some of their properties. This
approach reconciles two heretofore mutually exclusive fields:
Semantics and Runtime Reflection.

CCSConcepts •Theory of computation→Operational
semantics; Categorical semantics; Type theory; • Soft-
ware and its engineering→Reflectivemiddleware;Run-
time environments; Just-in-time compilers;

Keywords First-class, implementation, reflection, seman-
tics, tower

1 Introduction
Semantics predicts properties of computations without run-
ning them. Runtime Reflection allows unpredictable modi-
fications to running computations. The two seem opposite,
and those who practice one tend to ignore or prohibit the
other. This work reconciles them: semantics can specifywhat
computations do, reflection can control how they do it.

2 Formalizing Implementations
An elementary use of Category Theory can unify Opera-
tional Semantics and other common model of computations:
potential states of a computation and labelled transitions
between them are the nodes (“objects”) and arrows (“mor-
phisms”) of a category. The implementation of an abstract
computation A with a concrete one C is then a “partial func-
tor” from C to A, i.e. given a subset O of “observable” safe
points in C , a span of an interpretation functor from O to
A and the full embedding of O in C . Partiality is essential:
concepts atomic in an abstract calculus usually are not in a
OBT 2018, January 13, 2018, Los Angeles, California
2018. ACM ISBN 978-x-xxxx-xxxx-x/YY/MM. . . $15.00

a a′

c c′

A

C

Φ Φ

a a′

c c′

A

C

Φ Φ

a a′′

c′′

c c′

A>la

Φ

C>lc

Φ
a a′′

c c′ c′′

A

C

Φ

Cs

Φ

Sound Complete Live Observable

Figure 1: Some properties for implementations to have or not

more concrete calculus; concrete computations thus include
many intermediate steps not immediately meaningful in the
abstract.1
The mandatory soundness criterion is, remarkably, the

same as functoriality. Many other interesting properties may
or may not be hold for a given implementation: variants of
completeness guarantee that abstract nodes or arrows are
not left unimplemented in the concrete (e.g. can express the
notion of simulation [4]); variants of liveness guarantee that
progress in the abstract is made given enough progress in the
concrete (e.g. can express “real time” behavior); and variants
of observability guarantee that an observable abstract state
can be recovered given any intermediate state at which the
concrete computation is interrupted. These properties can
be visualized using bicolor diagrams such as in figure 1.2

3 Extracting a Runtime Protocol
The above properties can be formalized using dependent
types; their constructive proofs will then have a computa-
tional content as per the Curry-Howard Correspondence [3].
Observability could thus be formalized in Agda [5] as the
type of the following function observe where: .o and .ñ

denote node-wise and arrow-wise components; Φ is the in-
terpretation functor opposite the implementation of A with
C; a is the starting abstract state concretely implemented by
c (implicit inputs); c’ is the concrete state in which C was
interrupted after effects f (explicit input); c’’ is the observ-
able safe point that is being recovered after effects g (explicit

1For instance, languages in the ALGOL tradition have no notion of explicit
data registers or stacks, yet are typically implemented using lower-level
machines (virtual or “real”) that do; meanwhile their high-level “primitives”
each require many low-level instructions to implement.
2In these diagrams, computation is from left to right; abstract is above and
concrete below; property premises are in black and conclusions in blue;
and all diagrams commute. While an implementation is notionally from
abstract to concrete, the opposite arrows of Abstract Interpretation are
drawn, because functoriality goes from concrete to abstract, which is what
matters when diagrams commute; for more details on the diagrams see [6].

OBT 2018, January 13, 2018, Los Angeles, California François-René Rideau

output); safe.ñ guarantees that g cannot take too much re-
sources or do blocking I/O or require user intervention; and
a’’, h and the last property ensure the diagram commutes
(implicit outputs).
observe : @ {a : A.o} {c : C.o} {Φ.o c a}
{c' : C.o} (f : C.ñ c c') Ñ

D (λ {c'' : C.o} Ñ D (λ (g : C.ñ c' c'') Ñ

D (λ {a'' : A.o} Ñ D (λ {h : A.ñ a a''} Ñ

D (λ {safe.ñ g} Ñ Φ.ñ (C.compose g f) h)))))
Erasing dependencies, implicit arguments, compile-time and
redundant information, the content can be extracted as a
function in a programming language with less precise types:
observe : (f : C.ñ) Ñ (g : C.ñ)
In lay words, observe takes the interrupted fragment of
concrete computation and shows how to complete it into
one that is observable as an abstract computation.
Similarly, the computational content of completeness is

a function that allows to control the concrete computation
as if it were the abstract computation. The computational
content of liveness is a function that advances the concrete
computation enough to advance the abstract computation.
All these functions and more form an API that allows arbi-
trary implementations of arbitrary languages to be treated
as first-class objects, usable and composable at runtime.

4 Simulating or Performing Effects
Traditional reflection protocols [7] offer interfaces where
only state can be reified, and effects always happen as ambi-
ent side-effects, except sometimes for limited ad hoc ways to
catch them. By contrast, when extracting a protocol from a
categorical specification, it becomes obvious that effects too
deserve first-class reification, being the arrows of the reified
computation category.
One simple way of reifying effects is as a journal record-

ing I/O that happened during the computation — or would
happen were the computation to actually run (or run again).
More abstract representations can be symbolic, at a higher-
level than a low-level logger could record; they could be
monadic functions or arbitrary Kliesli arrows. In the end,
there are two complementary approaches in which effects
are either simulated or performed. Two functions simulate
and perform may translate one approach into the other:
but while perform can be written on top of any expres-
sive enough system (at a cost), achieving simulate requires
rewriting the entire system if the existing implementation
does not offer a suitable reflection protocol.

Now the reflection protocol itself includes effects beyond
those of the computations being reified and reflected— if only
partiality and its dual non-determinism. Implementations
and interpretations are partial and may fail on some nodes
or arrows. And even if a computation is itself deterministic
or at least confluent, running or advancing it includes non-
determinism as to how much work will be done according

to what evaluation strategy. A logical specification of the
protocol must therefore expose these effects.

5 Applications
The protocol, thanks to its crucial notion of observability,
enables navigating up and down a computation’s semantic
tower while it is running. Developers can then zoom in and
out of levels of abstraction and focus their tools on the right
level for whatever issue is at hand, neither too high nor too
low. Computations can be migrated from one underlying
implementation to the other, one machine or configuration
to the other — changing a running engine. Recovering an
abstractly observable safe point also enables safely killing
threads and upgrading code, thus achieving a robustness that
only Erlang [8] can currently provide. Code instrumentations
can be seen as the categorical opposites of Natural Trans-
formations; they can be written in a generic way, added to
running code, configured independently from code; they can
provide orthogonal persistence, access control, time-travel
debugging, and other capabilities to all languages. etc.
Each of these applications has been done before, but in

heroic ways, available only to one implementation of one lan-
guage, using some ad hoc notion of safe points (PCLSRing [1],
Garbage Collection [9], etc.). The promise of this runtime
reflection protocol is to achieve these applications in com-
paratively simple yet general ways, and made available uni-
versally: tools such as shells, debuggers, or code instrumen-
tations, can then work on all possible implementations of all
languages, specialized using e.g. typeclasses.
Finally, rooting a reflection protocol in formal methods

means it is now possible reason about metaprograms, and
maybe even feasably prove them correct; they need no longer
invalidate semantic reasoning nor introduce unmanageable
complexity.

6 Conclusion and Future Work
The ideas above remain largely unimplemented. But they al-
ready provide a new and promising way of looking at either
the semantics of implementations or the design of reflection
protocols — and more importantly, at the synergy between
those two estranged fields. My plan is to further implement
the protocol in Gambit Scheme: it already implements ob-
servability and migration at the level of its GVM [2], and
there is a Racket-like module system called Gerbil to develop
closed languages on top of it.

See my presentation at https://youtu.be/heU8NyX5Hus.

Bibliography
[1] Alan Bawden. PCLSRing: Keeping Process State Modu-

lar. 1989.
[2] Marc Feeley. Compiling for Multi-language Task Mi-

gration. 2015.

https://youtu.be/heU8NyX5Hus

Climbing Up the Semantic Tower — at Runtime OBT 2018, January 13, 2018, Los Angeles, California

[3] William A. Howard. The formulae-as-types notion of
construction. 1980.

[4] Robin Milner. An Algebraic Definition of Simulation
between Programs. 1971.

[5] Ulf Norell. Dependently typed programming in Agda.
2008.

[6] François-René Rideau. Reconciling Semantics and Re-
flection. 2018.

[7] Brian Cantwell Smith. Procedural Reflection in Pro-
gramming Languages. 1982.

[8] Joe Armstrong and Robert Virding and Claes Wikström
and Mike Williams. Concurrent Programming in ER-
LANG. 1993.

[9] Paul R. Wilson. Uniprocessor Garbage Collection Tech-
niques. 1992.

	Abstract
	1 Introduction
	2 Formalizing Implementations
	3 Extracting a Runtime Protocol
	4 Simulating or Performing Effects
	5 Applications
	6 Conclusion and Future Work
	Bibliography

