Climbing Up the Semantic Tower — at Runtime

François-René Rideau
TUNES
fare@tunes.org

Abstract
Software exists at multiple levels of abstraction, where each more concrete level is an implementation of the more abstract level above, in a semantic tower of compilers and/or interpreters. First-class implementations are a reflection protocol to navigate this tower at runtime: they enable changing the underlying implementation of a computation while it is running. Key is a generalized notion of safe points that enable observing a computation at a higher-level than that at which it runs, and therefore to climb up the semantic tower, when at runtime most existing systems only ever allow but to go further down. The protocol was obtained by extracting the computational content of a formal specification for implementations and some of their properties. This approach reconciles two heretofore mutually exclusive fields: Semantics and Runtime Reflection.

CCS Concepts • Theory of computation → Operational semantics; Categorical semantics; Type theory; • Software and its engineering → Reflective middleware; Runtime environments; Just-in-time compilers;

Keywords First-class, implementation, reflection, semantics, tower

1 Introduction
Semantics predicts properties of computations without running them. Runtime Reflection allows unpredictable modifications to running computations. The two seem opposite, and those who practice one tend to ignore or prohibit the other. This work reconciles them: semantics can specify what computations do, reflection can control how they do it.

2 Formalizing Implementations
An elementary use of Category Theory can unify Operational Semantics and other common model of computations: potential states of a computation and labelled transitions between them are the nodes ("objects") and arrows ("morphisms") of a category. The implementation of an abstract computation \(A \) with a concrete one \(C \) is then a "partial function" from \(C \) to \(A \), i.e. given a subset \(O \) of "observable" safe points in \(C \), a span of an interpretation functor from \(O \) to \(A \) and the full embedding of \(O \) in \(C \). Partiality is essential: concepts atomic in an abstract calculus usually are not in a

\[\begin{array}{c}
\text{Sound} \quad \text{Complete} \quad \text{Live} \quad \text{Observable}
\end{array}\]

Figure 1: Some properties for implementations to have or not

more concrete calculus; concrete computations thus include many intermediate steps not immediately meaningful in the abstract.\(^1\)

The mandatory soundness criterion is, remarkably, the same as functoriality. Many other interesting properties may or may not be hold for a given implementation: variants of completeness guarantee that abstract nodes or arrows are not left unimplemented in the concrete (e.g. can express the notion of simulation \([4]\)); variants of liveness guarantee that progress in the abstract is made given enough progress in the concrete (e.g. can express "real time" behavior); and variants of observability guarantee that an observable abstract state can be recovered given any intermediate state at which the concrete computation is interrupted. These properties can be visualized using bicolor diagrams such as in figure 1.\(^2\)

3 Extracting a Runtime Protocol
The above properties can be formalized using dependent types; their constructive proofs will then have a computational content as per the Curry-Howard Correspondence \([3]\). Observability could thus be formalized in Agda \([5]\) as the type of the following function \(\text{observe} \) where: \(\cdot\) and \(\cdot\) denote node-wise and arrow-wise components; \(\Phi\) is the interpretation functor opposite the implementation of \(A \) with \(C\); \(a\) is the starting abstract state concretely implemented by \(c\) (implicit inputs); \(c\) is the concrete state in which \(C \) was interrupted after effects \(f\) (explicit input); \(c\) is the observable safe point that is being recovered after effects \(g\) (explicit

\[\begin{array}{c}
\text{Sound} \quad \text{Complete} \quad \text{Live} \quad \text{Observable}
\end{array}\]

For instance, languages in the ALGOL tradition have no notion of explicit data registers or stacks, yet are typically implemented using lower-level machines (virtual or "real") that do; meanwhile their high-level "primitives" each require many low-level instructions to implement.

\(^1\)In these diagrams, computation is from left to right; abstract is above and concrete below; property premises are in black and conclusions in blue; and all diagrams commute. While an implementation is notionally from abstract to concrete, the opposite arrows of Abstract Interpretation are drawn, because functoriality goes from concrete to abstract, which is what matters when diagrams commute; for more details on the diagrams see \([6]\).
output); safe. ⇒ guarantees that g cannot take too much re-
resources or do blocking I/O or require user intervention; and
a”, h and the last property ensure the diagram commutes
(implicit outputs).
observe : ∀ {a : A.o} {c : C.o} {Φ.o c a}
(c' : C.o) (f : C.⇒ c c') →
∃ (λ {c'' : C.o} → Φ.(g : C.⇒ c' c'')) →
∃ (λ {a'' : A.o} → Φ.(h : A.⇒ a a'')) →
∃ (λ {safe.⇒ g} → Φ.⇒ (C.compose g f) h))))
Erasing dependencies, implicit arguments, compile-time and
redundant information, the content can be extracted as a
function in a programming language with less precise types:
observe : (f : C.⇒) → (g : C.⇒)
In lay words, observe takes the interrupted fragment of
crude computation and shows how to complete it into
one that is observable as an abstract computation.
Similarly, the computational content of completeness is
a function that allows to control the concrete computation
as if it were the abstract computation. The computational
content of liveness is a function that advances the concrete
computation enough to advance the abstract computation.
All these functions and more form an API that can be used
arbitrarily: tools such as shells, debuggers, or code instrumen-
tations; they can be written in a generic way, added to
running code, configured independently from code; they can
provide orthogonal persistence, access control, time-travel
debugging, and other capabilities to all languages. etc.
Each of these applications has been done before, but in
heroic ways, available only to one implementation of one lan-
guage, using some ad hoc notion of safe points (PCLSRing [1],
Garbage Collection [9], etc.). The promise of this runtime
reflection protocol is to achieve these applications in com-
paratively simple yet general ways, and made available uni-
versally: tools such as shells, debuggers, or code instrumen-
tations, can then work on all possible implementations of all
languages, specialized using e.g. typeclasses.

Finally, rooting a reflection protocol in formal methods
means it is now possible reason about metaprograms, and
maybe even feasibly prove them correct; they need no longer
invalidate semantic reasoning nor introduce unmanageable
complexity.

6 Conclusion and Future Work
The ideas above remain largely unimplemented. But they al-
ready provide a new and promising way of looking at either
the semantics of implementations or the design of reflection
protocols — and more importantly, at the synergy between
those two estranged fields. My plan is to further implement
the protocol in Gambit Scheme: it already implements ob-
servability and migration at the level of its GVM [2], and
there is a Racket-like module system called Gerbil to develop
closed languages on top of it.
See my presentation at https://youtu.be/heU8NyX5Hus.

Bibliography
[1] Alan Bawden. PCLSRing: Keeping Process State Modu-
[2] Marc Feeley. Compiling for Multi-language Task Mi-
gration. 2015.