
Delivering Common Lisp Applications with ASDF 3.3

Pushing the Envelope or Therapeutic Fury?

François-René Rideau, TUNES Project

European Lisp Symposium, 2017-04-03

http://github.com/fare/asdf2017/

1

This Talk

This Talk: A progress report on ASDF,

de facto standard build system for Common Lisp,

continued evolution of the tradition of Lisp,

a language discovered, not created, in 1958.

Plan

Some Background

Recent ASDF Progress

Lessons for build systems in any language

2

Some Background

3

What makes ASDF different

DEFSYSTEM: compile & load "systems" in-image

C analogs: make, ld.so, pkg-config, libc

Primarily designed for CL code

ASDF: extensible in CL itself via OO protocol...

... can be made to build anything!

Big focus on backward-compatibility

"If it's not backwards, it's not compatible"

4

Some History

1976 Unix Make

<1981 Lisp Machine DEFSYSTEM

1990 MK-DEFSYSTEM: portable, pre ANSI

2001 0.5 kloc danb’s ASDF: extensible OO build

2004 1.1 kloc danb’s ASDF 1.85: de facto standard

2010 3.3 kloc ASDF 2: robust portable configurable

2013 9.7 kloc ASDF 3: correct, delivers, UIOP

2014 11.3 kloc ASDF 3.1: CL as scripting language

2017 12.8 kloc ASDF 3.2: link C, launch-program

2017? 13.2 kloc ASDF 3.3: proper phase separation

5

Current Limitations

Not declarative enough:

CL has ubiquitous global side-effects

One global set of system versions

One global syntax

Compared to bazel, missing:

cross-compilation, determinism, scalability…

6

New in ASDF

7

Previously on this show...

ASDF 3.1 (2014) ELS, ILC demos:

CL as a scripting language

Bazelisp (2016) ELS demo:

scalably build executables

with statically-linked C extensions

8

2017 Innovations

ASDF 3.2 (January 2017):

Application Delivery with static C libraries

Asynchronous subprocesses with launch-program

Source Location Configuration improvements

Deprecation infrastructure

ASDF 3.3 (Real Soon Now 2017):

Proper Phase Separation

9

Application Delivery with static C libraries

Previously

Extract functions & constants: :cffi-grovel-file

Compile & link wrappers: :cffi-wrapper-file

New in ASDF 3.2 + cffi-toolchain (2017)

Plain C code to link to: :c-file

cffi-toolchain: one place to deal with C

Not (yet) a general-purpose C build system

Missing per-system compile and link flags

10

Example system using C code

(defsystem "foo" :depends-on ("cffi")
 :defsystem-depends-on ("cffi-grovel")
 :serial t
 :component
 ((:cffi-grovel-file "interface-extraction")

(:cffi-wrapper-file "complex-interfaces")
(:c-file "some-c-code")
(:cl-source-file "some-lisp")))

11

Loading a system

2001: (asdf:operate 'asdf:load-op "foo")

or "short" (asdf:oos 'asdf:load-op "foo")

2009: also (asdf:load-system "foo")

2013: also (asdf:oos :load-op "foo")

2014: also (asdf:make "foo")

12

Making a binary

ASDF 3.0 (2013): image-based delivery

devel. image (asdf:oos :image-op "foo")

standalone app. (asdf:oos :program-op "foo")

Any C extensions must be dynamically linked

ASDF 3.2 (2017): with static C extensions

(asdf:oos :static-image-op "foo")

(asdf:oos :static-program-op "foo")

13

Demo time!

(asdf:make "workout-timer/static")

14

Asynchronous subprocesses

ASDF 3.1 (2014): run-program

synchronous subprocesses (Unix and Windows)

exit status, optionally error out if not successful

I/O redir.: inject into stdin, capture stdout & stderr

ASDF 3.2 (2017): launch-program

asynchronous subprocess (Unix and Windows)

exit status, waiting for processes, killing them

I/O redirection, interaction through streams

15

Asynchronous Limitations

No event loop to which to integrate

No general signal support

Can make do with pipes and macros

Still way better than shell programming!

For more serious system programming: iolib

It requires a C extension—but that’s now easier!

16

Source Location Configuration: Before

ASDF 1 (2001): push to *central-registry*

early in ~/.sbclrc — repeat for each impl!

ASDF 2 (2010): declare hierarchical source-registry

~/.config/common-lisp/source-registry.conf

Inherit wider configuration, or override it, from CL…

or from shell: CL_SOURCE_REGISTRY, XDG vars

Default ∋ ~/.local/share/common-lisp/source/

ASDF 3.1 (2014), also ~/common-lisp/

17

Source Location Configuration: After

Recursing through large trees can be very slow

2015: .cl-source-registry.cache for a :tree
Regenerate with a standard #!/usr/bin/cl script:

asdf/tools/cl-source-registry-cache.lisp

Harkens back to ASDF 1 style symlink farms, but

only for impatient power users with lots of systems

2015: also multicall binaries with cl-launch

2016: expose interface to XDG base directory vars
 XDG also on Windows, modulo ASDF adaptation

ASDF 3.2 (2017): the new release has it all
18

Deprecation Infrastructure

asdf:run-shell-command was a very bad API

Use uiop:run-program instead, as per docstring

In 3.2, using it now issues a style-warning

In 3.3, full warning if used, breaks on SBCL

In 3.4, cerror if used, breaks everywhere

In 3.5, error if not deleted yet from codebase

uiop/version makes staged deprecation easy

Part of UIOP 3.2, part of ASDF 3.2 (2017)

19

Proper Phase Separation

ASDF extensions: with CLOS. How to load one?

Using ASDF!

What if it itself relies on extensions?

Build in multiple phases.

What if an extension is modified?

Rebuild everything that transitively depends on it.

And what if a library is needed in multiple phases?

Only build it once.
20

Improper Phase Separation

ASDF 1 had only two phases: plan, then perform

(that was its least bug—see ASDF 2 & 3 papers)

If defining system foo depends on ext:

ASDF 1: foo.asd has (oos 'load-op "ext")

ASDF 2: :defsystem-depends-on ("ext")

ASDF 3: make it usable despite package issue

Kind of works. ASDF unaware it’s recursively called

Across phases: extra builds, missing rebuilds

21

Separating Phases

ASDF 3.3: loading the asd file is itself an action!

define-op — for primary systems.

Big tricky refactoring of find-system:

find-system > load-asd > operate > perform > load*

ASDF 3 had a cache: only call input-files once

(its API functions define a pure attribute grammar)

ASDF 3.3 extends it to a multi-phase session

One plan per phase, a session across phases.

22

Traversal of the Action Graph

Many kinds of traversals of the graph of actions:

ASDF 1: mark as needed, in this image

ASDF 3: mark as needed, in any previous image

ASDF 3: go thru all dependencies, e.g. to get list

ASDF 3.3: query whether up-to-date

ASDF 1: 1 bit (keep), plus "magic" (=bugs)

ASDF 3: 2 bit (needed-in-image), plus timestamp

ASDF 3.3: 3 bit (done), plus phase

23

Proper Phase Separation: Incompatibilities

:defsystem-depends-on to systems in same file

(as in the latest iolib release)

clear-system inside perform
(as in lots of systems that use prove)

operate in a CL file or perform method
(temporary exception: (require …))

Now very bad taste: misnamed secondary system
(used all over: once a ASDF 1 colloquialism)

24

Proper Phase Separation: How good are we?

Build extensions is a universal need

Most build systems (Make…): on par with ASDF 1

Language-specific builds can be greater (Racket…)
but not general-purpose.

Bazel: non-extensible extension language

25

Proper Phase Separation: How good are we?

Build extensions is a universal need

Most build systems (Make…): on par with ASDF 1

Language-specific builds can be greater (Racket…)
but not general-purpose.

Bazel: non-extensible extension language

ASDF is on the bleeding edge!?

26

Lessons and Opportunities

27

Evolving ASDF

ASDF sucks—less

Amazing how much is done with how few klocs

Ceiling: CL’s model of global side-effects

Impedes declarativeness, reproducibility, etc.

Evolution is costly (yet consider the alternative)

Gets worse as the code- and user- bases grow

Backward-incompatible change: takes 1-2 years…

Quicklisp: fix it all! And/or issue warnings and wait.

28

Beyond ASDF?

The ultimate purpose of a build system is:

Division of labor

Opportunity for much a better build system.

What design is worth starting from scratch?

Core: Pure FRP, CLOS-style OO, versioning

plus staging, virtualization, instrumentation

http://j.mp/BuildSystems

29

Enjoy ASDF!

Common Lisp keeps improving, slowly:

AI, e-commerce, games…

Web, desktop or mobile apps—and now scripts #!

ASDF also keeps improving, slowly.

If there were demand, it could improve faster…

Donate to ASDF through the CLF!

https://common-lisp.net/project/asdf/

30

