
Delivering Common Lisp Applications with ASDF 3.3
Robert P. Goldman

SIFT
rpgoldman@si�.net

Elias Pipping
FU Berlin

elias.pipping@fu-berlin.de

François-René Rideau
TUNES

fare@tunes.org

Abstract
ASDF is the de facto standard build system for Common Lisp (CL).
In this paper, we discuss the most important improvements in ASDF
versions 3.2 and 3.3. ASDF’s ability to deliver applications as a sin-
gle executable �le now allows the static linking of arbitrary code
written in C. We substantially improved ASDF’s portability library
UIOP, so its interface to spawn and control external processes now
supports asynchronous processes. ASDF permits programmers to
extend ASDF’s build processes in an object-oriented way; until
ASDF 3.2, however, ASDF did not correctly handle updates to these
extensions during incremental builds. Fixing this involved manag-
ing the multiple phases in an ASDF build session. We also improved
ASDF’s source �nding: it provides more usable default behaviors
without any con�guration; power users willing to manage its loca-
tion caching can speed it up; and it o�ers better compliance with
standard con�guration locations.

CCSConcepts • Software and its engineering→ Softwaremain-
tenance tools;

Keywords ASDF, Build System, Common Lisp, Portability, Appli-
cation Delivery, Demo

1 Introduction
Common Lisp (CL) is a general-purpose programming language
with over ten active implementations on Linux, Windows, macOS,
etc. ASDF, the de facto standard build system for CL, has matured
from a wildly successful experiment to a universally used, robust,
portable tool. While doing so, ASDF has maintained backward
compatibility through many major changes, from Daniel Barlow’s
original ASDF in 2002 to François-René Rideau’s largely rewritten
versions, ASDF 2 in 2010, ASDF 3 in 2013, and now ASDF 3.3 in
2017. ASDF is provided as a loadable extension by all actively main-
tained CL implementations; it also serves as the system loading
infrastructure for Quicklisp, a growing collection of now over 1,400
CL libraries. In this paper, we present some of the most notable im-
provements made to ASDF since we last reported on it [4], focusing
on improvements to application delivery and subprocess manage-
ment, better handling of ASDF extensions, and source location
con�guration re�nements.

2 Application Delivery
ASDF 3 introduced bundle operations, a portable way to deliver a
software system as a single, bundled �le. This single �le can be
either: (1) a source �le, concatenating all the source code; (2) a
FASL �le, combining all compiled code; (3) a saved image; or (4)
a standalone application. In the �rst two cases, the programmer

ELS 2017, Brussel, Belgium
2017. This is the author’s version of the work. It is posted here for your personal use.
Not for redistribution. The de�nitive Version of Record was published in Proceedings
of The 10th European Lisp Symposium, April 3–4, 2017.

controls whether or not the bundle includes with a system all the
other systems it transitively depends on.

We made bundle operations stable and robust across all active CL
implementations and operating systems. We also extended these
operations so that ASDF 3.2 supports single-�le delivery of applica-
tions that incorporate arbitrary C code and libraries. This feature
works in conjunction with CFFI-toolchain, an extension which we
added to the de facto standard foreign function interface CFFI. CFFI-
toolchain statically links arbitrary C code into the Lisp runtime. As
of 2017, this feature works on three implementations: CLISP, ECL,
and SBCL.

Loading a large Lisp application, either from source or from com-
piled �les, can take several seconds. This delay may be unacceptable
in use cases such as small utility programs, or �lters in a Unix pipe
chain. ASDF 3 can reduce this latency by delivering a standalone
executable that can start in tens of milliseconds. However, such
executables each occupy tens or hundreds of megabytes on disk
and in memory; this size can be prohibitive when deploying a large
number of small utilities. One solution is to deliver a “multicall
binary” à la Busybox: a single binary includes several programs;
the binary can be symlinked or hardlinked with multiple names,
and will select which entry point to run based on the name used
to invoke it. Zach Beane’s buildapp has supported such binaries
since 2010, but buildapp only works on SBCL, and more recently
CCL. cl-launch, a portable interface between the Unix shell and
all CL implementations, also has supported multicall binaries since
2015.

3 Subprocess Management
ASDF has always supported the ability to synchronously execute
commands in a subprocess. Originally, ASDF 1 copied over a func-
tion run-shell-command from its predecessor mk-defsystem [2];
but it could not reliably capture command output, it had a baroque
calling convention, and was not portable (especially to Windows).
ASDF 3 introduced the function run-program that �xed all these
issues, as part of its portability library UIOP. By ASDF 3.1 run-
program provided a full-�edged portable interface to synchronously
execute commands in subprocesses: users can redirect and trans-
form input, output, and error-output; by default, run-program will
throw CL conditions when a command fails, but users can tell it to
:ignore-exit-status, access and handle exit code themselves.

ASDF 3.2 introduces support for asynchronously running pro-
grams, using new functions launch-program, wait-process, and
terminate-process. These functions, available on capable imple-
mentations and platforms only, were written by Elias Pipping, who
refactored, extended and exposed logic previously used in the im-
plementation of run-program.

With run-program and now launch-program, CL can be used to
portably write all kind of programs for which one might previously
have used a shell script. Except CL’s rich data structures, higher-
order functions, sophisticated object system, restartable conditions
and macros beat the o�ering of its scripting alternatives [4] [5].

https://common-lisp.net/
https://common-lisp.net/project/asdf/
https://quicklisp.org/
https://common-lisp.net/project/cffi/
https://busybox.net/
http://www.xach.com/lisp/buildapp/
http://www.cliki.net/cl-launch


ELS 2017, April 3–4, 2017, Brussel, Belgium Robert P. Goldman, Elias Pipping, and François-René Rideau

4 Build Model Correctness
The original ASDF 1 introduced a simple “plan-then-perform” model
for building software. It also introduced an extensible class hierar-
chy so ASDF could be extended in Lisp itself to support more than
just compiling Lisp �les. For example, some extensions support
interfacing with C code.

Unfortunately, these two features were at odds with one another:
to load a program that uses an ASDF extension, one would in a �rst
phase use ASDF to plan then perform loading the extension; and
one would in a second phase plan then perform loading the target
program. Of course, there could be more than just two phases: some
extensions could themselves require other extensions in order to
load, etc. Moreover, the same libraries could be used in several
phases.

In practice, this simple approach was e�ective in building soft-
ware from scratch, though not necessarily as e�cient as possible
since libraries could sometimes unnecessarily be compiled or loaded
more than once. However, in the case of an incremental build, ASDF
would overlook that a change in one phase could a�ect the build in
a later phase, and fail to invalidate and re-perform actions accord-
ingly. Indeed it failed to even consider loading a system de�nition
as an action that may be invalidated and re-performed when it
depended on code that had changed. The user was then responsible
for diagnosing the failure and forcing a rebuild from scratch.

ASDF 3.3 �xes this issue. It supports a notion of session wherein
code is built and loaded in multiple phases. It tracks the status of
traversed actions across phases of a session, whereby an action
can independently be (1) considered up-to-date or not at the start
of the session, (2) considered done or not for the session, and (3)
considered needed or not during the session, and if so, for how early
a phase. When ASDF 3.3 checks whether an action is still valid from
previous sessions, it uses a special traversal that carefully avoids
either loading system de�nitions or performing any other actions
that are potentially either out-of-date or unneeded for the session.

Build extensions are a common user need, though most build
systems fail to o�er proper dependency tracking when they change.
Those build systems that do implement proper phase separation
to track these dependencies are usually language-speci�c build
systems (like ASDF), but most of them (unlike ASDF) only deal
with staging macros or extensions inside the language, not with
building arbitrary code outside the language. An interesting case is
Bazel, which does maintain a strict plan-then-perform model yet
allows user-provided extensions (e.g. to support Lisp [6]). However,
its extensions, written in a safe restricted DSL, are not themselves
subject to extension using the build system.

Fixing the build model in ASDF 3.3 led to subtle backward-
incompatible changes. Libraries available on Quicklisp were in-
spected, and their authors contacted if they depended on modi�ed
functionality or abandoned internals. Those libraries that are still
maintained were �xed.

5 Source Location Con�guration
In 2010, ASDF 2 introduced a basic principle for all con�guration:
allow each person to contribute what they know when they know it,
and do not require anyone to contribute what they do not know [1]. In
particular, everything should “just work” by default for end-users,
without any need for con�guration, but con�guration should be
possible for “power users” and unusual applications.

ASDF 3.1, now o�ered by all active implementations, includes
„/common-lisp/ as well as „/.local/share/common-lisp/ in
its source registry by default; there is thus always an obvious place
in which to drop source code such that ASDF will �nd it: under the
former for code meant to be visible to end-users, under the latter
for code meant to be hidden from them.

ASDF 2 and later consult the XDG Base Directory environment
variables [3] when locating its con�guration. Since 2015, ASDF
exposes a con�guration interface so all Lisp programs may similarly
respect this Unix standard for locating con�guration �les. The
mechanism is also made available on macOS and Windows, though
with ASDF-speci�c interpretations of the standard: XDG makes
assumption about �lesystem layout that do not always have a direct
equivalent on macOS, and even less so on Windows.

Finally, a concern for users with a large number of systems avail-
able as source code was that ASDF could spend several seconds
the �rst time you used it just to recursively scan �lesystem trees in
the source-registry for .asd �les — a consequence of how the de-
centralized ASDF system namespace is overly decoupled from any
�lesystem hierarchy. Since 2014, ASDF provides a script tools/cl-
source-registry-cache.lisp that will scan a tree in advance
and create a �le .cl-source-registry.cache with the results,
that ASDF will consult. Power users who use this script can get
scanning results at startup in milliseconds; the price they pay is hav-
ing to re-run this script (or otherwise edit the �le) whenever they
install new software or remove old software. This is reminiscent
of the bad old days before ASDF 2, when power users each had to
write their own script to do something equivalent to manage “link
farms”, directories full of symlinks to .asd �les. But at least, there
is now a standardized script for power users to do that, whereas
things just work without any such trouble for normal users.

6 Conclusions and Future Work
We have demonstrated improvements in how ASDF can be used
to portably and robustly deliver software written in CL. While the
implementation is speci�c to CL, many of the same techniques
could be applied to other languages.

In the future, there are many features we might want to add,
in dimensions where ASDF lags behind other build systems such
as Bazel: support for cross-compilation to other platforms, repro-
ducible distributed builds, building software written in languages
other than CL, integration with non-Lisp build systems, etc.

Bibliography
[1] François-René Rideau and Robert Goldman. Evolving ASDF:

More Cooperation, Less Coordination. In Proc. ILC, 2010.
[2] Mark Kantrowitz. Defsystem: A Portable Make Facility for

Common Lisp. 1990.
[3] Waldo Bastian, Ryan Lortie and Lennart Poettering. XDG Base

Directory Speci�cation. 2010.
[4] François-René Rideau. Why Lisp is Now an Acceptable Script-

ing Language. In Proc. ELS, 2014.
[5] François-René Rideau. Common Lisp as a Scripting Language,

2015 edition. 2015.
[6] James Y. Knight, François-René Rideau and Andrzej Walczak.

Building Common Lisp programs using Bazel or Correct, Fast,
Deterministic Builds for Lisp. In Proc. ELS, 2016.

https://bazel.build/
https://standards.freedesktop.org/basedir-spec/basedir-spec-latest.html

	Abstract
	1 Introduction
	2 Application Delivery
	3 Subprocess Management
	4 Build Model Correctness
	5 Source Location Configuration
	6 Conclusions and Future Work
	Bibliography

